Advertisements
Advertisements
प्रश्न
7 + 77 + 777 + ... + 777 \[{. . . . . . . . . . .}_{n - \text{ digits } } 7 = \frac{7}{81}( {10}^{n + 1} - 9n - 10)\]
उत्तर
Let P(n) be the given statement.
Now,
\[P(n): 7 + 77 + 777 + . . . + 777 . . ._{\text{ n digits } } . . . 7 = \frac{7}{81}( {10}^{n + 1} - 9n - 10)\]
\[\text{ Step(1): } \]
\[P(1) = 7 = \frac{7}{81}( {10}^2 - 9 - 10) = \frac{7}{81} \times 81 \]
\[\text{ Thus, P(1) is true } . \]
\[\text{ Step } 2: \]
\[\text{ Let P(m) be true } . \]
\[\text{ Then,} \]
\[7 + 77 + 777 + . . . + 777 . . ._{\text{ m digits} } . . . 7 = \frac{7}{81}( {10}^{m + 1} - 9m - 10)\]
\[\text{ We need to show that P(m + 1) is true whenever P(m) is true} . \]
Now, P(m + 1) = 7 + 77 + 777 +....+ 777...(m + 1) digits...7
\[\text{ This is a geometric progression with } n = m + 1 . \]
\[ \therefore \text{ Sum } P(m + 1): \]
\[ = \frac{7}{9}\left[ 9 + 99 + 999 + . . . \left( m + 1 \right)term \right]\]
\[ = \frac{7}{9}\left[ \left( 10 - 1 \right) + \left( 100 - 1 \right) + . . . (m + 1) \text{ term } \right]\]
\[ = \frac{7}{9}\left[ 10 + 100 + 1000 + . . . (m + 1) \text { term } - (1 + 1 + 1 . . . m + 1\text{ times} . . . + 1 \right]\]
\[ = \frac{7}{9}\left[ \frac{10\left( {10}^{m + 1} - 1 \right)}{9} - m + 1 \right]\]
\[ = \frac{7}{81}\left[ {10}^{m + 2} - 9m - 19 \right]\]
\[\text{ Thus, P(m + 1) is true } . \]
\[\text{ By the principle of mathematical induction, } P\left( n \right)\text{ is true for all n } \in N . \]
APPEARS IN
संबंधित प्रश्न
Prove the following by using the principle of mathematical induction for all n ∈ N:
`1 + 3 + 3^2 + ... + 3^(n – 1) =((3^n -1))/2`
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N: 1.2.3 + 2.3.4 + … + n(n + 1) (n + 2) = `(n(n+1)(n+2)(n+3))/(4(n+3))`
Prove the following by using the principle of mathematical induction for all n ∈ N: n (n + 1) (n + 5) is a multiple of 3.
If P (n) is the statement "n(n + 1) is even", then what is P(3)?
\[\frac{1}{1 . 2} + \frac{1}{2 . 3} + \frac{1}{3 . 4} + . . . + \frac{1}{n(n + 1)} = \frac{n}{n + 1}\]
1.2 + 2.22 + 3.23 + ... + n.2n = (n − 1) 2n+1+2
2 + 5 + 8 + 11 + ... + (3n − 1) = \[\frac{1}{2}n(3n + 1)\]
1.3 + 3.5 + 5.7 + ... + (2n − 1) (2n + 1) =\[\frac{n(4 n^2 + 6n - 1)}{3}\]
\[\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + . . . + \frac{1}{2^n} = 1 - \frac{1}{2^n}\]
a + ar + ar2 + ... + arn−1 = \[a\left( \frac{r^n - 1}{r - 1} \right), r \neq 1\]
52n −1 is divisible by 24 for all n ∈ N.
Given \[a_1 = \frac{1}{2}\left( a_0 + \frac{A}{a_0} \right), a_2 = \frac{1}{2}\left( a_1 + \frac{A}{a_1} \right) \text{ and } a_{n + 1} = \frac{1}{2}\left( a_n + \frac{A}{a_n} \right)\] for n ≥ 2, where a > 0, A > 0.
Prove that \[\frac{a_n - \sqrt{A}}{a_n + \sqrt{A}} = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right) 2^{n - 1}\]
\[\frac{(2n)!}{2^{2n} (n! )^2} \leq \frac{1}{\sqrt{3n + 1}}\] for all n ∈ N .
\[\text{ Let } P\left( n \right) \text{ be the statement } : 2^n \geq 3n . \text{ If } P\left( r \right) \text{ is true, then show that } P\left( r + 1 \right) \text{ is true . Do you conclude that } P\left( n \right)\text{ is true for all n } \in N?\]
Show by the Principle of Mathematical induction that the sum Sn of then terms of the series \[1^2 + 2 \times 2^2 + 3^2 + 2 \times 4^2 + 5^2 + 2 \times 6^2 + 7^2 + . . .\] is given by \[S_n = \binom{\frac{n \left( n + 1 \right)^2}{2}, \text{ if n is even} }{\frac{n^2 \left( n + 1 \right)}{2}, \text{ if n is odd } }\]
Prove that the number of subsets of a set containing n distinct elements is 2n, for all n \[\in\] N .
\[\text{ A sequence } a_1 , a_2 , a_3 , . . . \text{ is defined by letting } a_1 = 3 \text{ and } a_k = 7 a_{k - 1} \text{ for all natural numbers } k \geq 2 . \text{ Show that } a_n = 3 \cdot 7^{n - 1} \text{ for all } n \in N .\]
Prove by method of induction, for all n ∈ N:
12 + 32 + 52 + .... + (2n − 1)2 = `"n"/3 (2"n" − 1)(2"n" + 1)`
Prove by method of induction, for all n ∈ N:
13 + 33 + 53 + .... to n terms = n2(2n2 − 1)
Prove by method of induction, for all n ∈ N:
1.3 + 3.5 + 5.7 + ..... to n terms = `"n"/3(4"n"^2 + 6"n" - 1)`
Prove by method of induction, for all n ∈ N:
`1/(3.5) + 1/(5.7) + 1/(7.9) + ...` to n terms = `"n"/(3(2"n" + 3))`
Answer the following:
Prove, by method of induction, for all n ∈ N
8 + 17 + 26 + … + (9n – 1) = `"n"/2(9"n" + 7)`
Answer the following:
Prove, by method of induction, for all n ∈ N
`1/(3.4.5) + 2/(4.5.6) + 3/(5.6.7) + ... + "n"/(("n" + 2)("n" + 3)("n" + 4)) = ("n"("n" + 1))/(6("n" + 3)("n" + 4))`
Answer the following:
Prove by method of induction 52n − 22n is divisible by 3, for all n ∈ N
Prove by the Principle of Mathematical Induction that 1 × 1! + 2 × 2! + 3 × 3! + ... + n × n! = (n + 1)! – 1 for all natural numbers n.
Give an example of a statement P(n) which is true for all n ≥ 4 but P(1), P(2) and P(3) are not true. Justify your answer
Give an example of a statement P(n) which is true for all n. Justify your answer.
A sequence a1, a2, a3 ... is defined by letting a1 = 3 and ak = 7ak – 1 for all natural numbers k ≥ 2. Show that an = 3.7n–1 for all natural numbers.
Prove that for all n ∈ N.
cos α + cos(α + β) + cos(α + 2β) + ... + cos(α + (n – 1)β) = `(cos(alpha + ((n - 1)/2)beta)sin((nbeta)/2))/(sin beta/2)`.
Prove that, sinθ + sin2θ + sin3θ + ... + sinnθ = `((sin ntheta)/2 sin ((n + 1))/2 theta)/(sin theta/2)`, for all n ∈ N.
Show that `n^5/5 + n^3/3 + (7n)/15` is a natural number for all n ∈ N.
Prove that `1/(n + 1) + 1/(n + 2) + ... + 1/(2n) > 13/24`, for all natural numbers n > 1.
If P(n): 2n < n!, n ∈ N, then P(n) is true for all n ≥ ______.
Consider the statement: “P(n) : n2 – n + 41 is prime." Then which one of the following is true?