हिंदी

Prove that the Area of the Parallelogram Formed by the Lines A1x + B1y + C1 = 0, A1x + B1y+ D1 = 0, A2x + B2y + C2 = 0, A2x + B2y + D2 = 0 is - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that the area of the parallelogram formed by the lines a1x + b1y + c1 = 0, a1x + b1yd1 = 0, a2x + b2y + c2 = 0, a2x + b2y + d2 = 0 is  \[\left| \frac{\left( d_1 - c_1 \right)\left( d_2 - c_2 \right)}{a_1 b_2 - a_2 b_1} \right|\] sq. units.
Deduce the condition for these lines to form a rhombus.

 

टिप्पणी लिखिए

उत्तर

The given lines are
a1x + b1y + c1 = 0      ... (1)
a1x + b1y + d1 = 0      ... (2)
a2x + b2y + c2 = 0      ... (3)
a2x + b2y + d2 = 0      ... (4)
The area of the parallelogram formed by the lines a1x + b1y + c1 = 0, a1x + b1y + d1 = 0, a2x + b2y + c2 = 0 and a2x + b2y + d2 = 0 is given below:

\[Area = \left| \frac{\left( c_1 - d_1 \right)\left( c_2 - d_2 \right)}{\begin{vmatrix}a_1 & a_2 \\ b_1 & b_2\end{vmatrix}} \right|\]
\[\because \begin{vmatrix}a_1 & a_2 \\ b_1 & b_2\end{vmatrix} = a_1 b_2 - a_2 b_1\]
\[\therefore Area = \left| \frac{\left( c_1 - d_1 \right)\left( c_2 - d_2 \right)}{a_1 b_2 - a_2 b_1} \right| = \left| \frac{\left( d_1 - c_1 \right)\left( d_2 - c_2 \right)}{a_1 b_2 - a_2 b_1} \right|\]
If the given parallelogram is a rhombus, then the distance between the pair of parallel lines are equal.
\[\therefore \left| \frac{c_1 - d_1}{\sqrt{{a_1}^2 + {b_1}^2}} \right| = \left| \frac{c_2 - d_2}{\sqrt{{a_2}^2 + {b_2}^2}} \right|\]

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 23: The straight lines - Exercise 23.17 [पृष्ठ ११७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 23 The straight lines
Exercise 23.17 | Q 1 | पृष्ठ ११७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the equation of the line which satisfy the given condition:

Write the equations for the x and y-axes.


Find the equation of the line which satisfy the given condition:

Passing through the point (–4, 3) with slope `1/2`.


Find the equation of the line which satisfy the given condition:

Passing though (0, 0) with slope m.


Find the equation of the line which satisfy the given condition:

Intersects the x-axis at a distance of 3 units to the left of origin with slope –2.


Find the equation of the line which satisfy the given condition:

Passing through the points (–1, 1) and (2, –4).


Find the equation of the line which is at a perpendicular distance of 5 units from the origin and the angle made by the perpendicular with the positive x-axis is 30°


Find the equation of the line which satisfy the given condition:

The vertices of ΔPQR are P (2, 1), Q (–2, 3) and R (4, 5). Find equation of the median through the vertex R.


The vertices of ΔPQR are P (2, 1), Q (–2, 3) and R (4, 5). Find equation of the median through the vertex R.


Find the equation of the line passing through (–3, 5) and perpendicular to the line through the points (2, 5) and (–3, 6).


A line perpendicular to the line segment joining the points (1, 0) and (2, 3) divides it in the ratio 1:n. Find the equation of the line.


Find equation of the line through the point (0, 2) making an angle  `(2pi)/3` with the positive x-axis. Also, find the equation of line parallel to it and crossing the y-axis at a distance of 2 units below the origin.


The owner of a milk store finds that, he can sell 980 litres of milk each week at Rs 14/litre and 1220 litres of milk each week at Rs 16/litre. Assuming a linear relationship between selling price and demand, how many litres could he sell weekly at Rs 17/litre?


By using the concept of equation of a line, prove that the three points (3, 0), (–2, –2) and (8, 2) are collinear.


Find the area of the triangle formed by the lines y – x = 0, x + y = 0 and x – k = 0.


If the lines y = 3x + 1 and 2y = x + 3 are equally inclined to the line y = mx + 4, find the value of m.


Classify the following pair of line as coincident, parallel or intersecting:

 2x + y − 1 = 0 and 3x + 2y + 5 = 0


Classify the following pair of line as coincident, parallel or intersecting:

x − y = 0 and 3x − 3y + 5 = 0]


Prove that the lines \[\sqrt{3}x + y = 0, \sqrt{3}y + x = 0, \sqrt{3}x + y = 1 \text { and } \sqrt{3}y + x = 1\]  form a rhombus.


Find the equation to the straight line parallel to 3x − 4y + 6 = 0 and passing through the middle point of the join of points (2, 3) and (4, −1).


Prove that the lines 2x − 3y + 1 = 0, x + y = 3, 2x − 3y = 2  and x + y = 4 form a parallelogram.


Find the angle between the lines x = a and by + c = 0..


Prove that the area of the parallelogram formed by the lines 3x − 4y + a = 0, 3x − 4y + 3a = 0, 4x − 3y− a = 0 and 4x − 3y − 2a = 0 is \[\frac{2}{7} a^2\] sq. units..


Show that the diagonals of the parallelogram whose sides are lx + my + n = 0, lx + my + n' = 0, mx + ly + n = 0 and mx + ly + n' = 0 include an angle π/2.


Write an equation representing a pair of lines through the point (a, b) and parallel to the coordinate axes.


Three vertices of a parallelogram taken in order are (−1, −6), (2, −5) and (7, 2). The fourth vertex is


Let ABC be a triangle with A(–3, 1) and ∠ACB = θ, 0 < θ < `π/2`. If the equation of the median through B is 2x + y – 3 = 0 and the equation of angle bisector of C is 7x – 4y – 1 = 0, then tan θ is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×