English

Prove that the Area of the Parallelogram Formed by the Lines A1x + B1y + C1 = 0, A1x + B1y+ D1 = 0, A2x + B2y + C2 = 0, A2x + B2y + D2 = 0 is - Mathematics

Advertisements
Advertisements

Question

Prove that the area of the parallelogram formed by the lines a1x + b1y + c1 = 0, a1x + b1yd1 = 0, a2x + b2y + c2 = 0, a2x + b2y + d2 = 0 is  \[\left| \frac{\left( d_1 - c_1 \right)\left( d_2 - c_2 \right)}{a_1 b_2 - a_2 b_1} \right|\] sq. units.
Deduce the condition for these lines to form a rhombus.

 

Short Note

Solution

The given lines are
a1x + b1y + c1 = 0      ... (1)
a1x + b1y + d1 = 0      ... (2)
a2x + b2y + c2 = 0      ... (3)
a2x + b2y + d2 = 0      ... (4)
The area of the parallelogram formed by the lines a1x + b1y + c1 = 0, a1x + b1y + d1 = 0, a2x + b2y + c2 = 0 and a2x + b2y + d2 = 0 is given below:

\[Area = \left| \frac{\left( c_1 - d_1 \right)\left( c_2 - d_2 \right)}{\begin{vmatrix}a_1 & a_2 \\ b_1 & b_2\end{vmatrix}} \right|\]
\[\because \begin{vmatrix}a_1 & a_2 \\ b_1 & b_2\end{vmatrix} = a_1 b_2 - a_2 b_1\]
\[\therefore Area = \left| \frac{\left( c_1 - d_1 \right)\left( c_2 - d_2 \right)}{a_1 b_2 - a_2 b_1} \right| = \left| \frac{\left( d_1 - c_1 \right)\left( d_2 - c_2 \right)}{a_1 b_2 - a_2 b_1} \right|\]
If the given parallelogram is a rhombus, then the distance between the pair of parallel lines are equal.
\[\therefore \left| \frac{c_1 - d_1}{\sqrt{{a_1}^2 + {b_1}^2}} \right| = \left| \frac{c_2 - d_2}{\sqrt{{a_2}^2 + {b_2}^2}} \right|\]

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 23: The straight lines - Exercise 23.17 [Page 117]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 23 The straight lines
Exercise 23.17 | Q 1 | Page 117

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the equation of the line which satisfy the given condition:

Passing though `(2, 2sqrt3)` and is inclined with the x-axis at an angle of 75°.


Find the equation of the line which satisfy the given condition:

Intersects the x-axis at a distance of 3 units to the left of origin with slope –2.


Find the equation of the line which satisfy the given condition:

Intersects the y-axis at a distance of 2 units above the origin and making an angle of 30° with the positive direction of the x-axis.


Find the equation of the line which satisfy the given condition:

Passing through the points (–1, 1) and (2, –4).


Find the equation of the line which satisfy the given condition:

The vertices of ΔPQR are P (2, 1), Q (–2, 3) and R (4, 5). Find equation of the median through the vertex R.


A line perpendicular to the line segment joining the points (1, 0) and (2, 3) divides it in the ratio 1:n. Find the equation of the line.


Find equation of the line passing through the point (2, 2) and cutting off intercepts on the axes whose sum is 9.


P (a, b) is the mid-point of a line segment between axes. Show that equation of the line is `x/a + y/b = 2`


Point R (h, k) divides a line segment between the axes in the ratio 1:2. Find equation of the line.


By using the concept of equation of a line, prove that the three points (3, 0), (–2, –2) and (8, 2) are collinear.


Find the values of q and p, if the equation x cos q + y sinq = p is the normal form of the line `sqrt3 x` + y + 2 = 0.


Find the area of the triangle formed by the lines y – x = 0, x + y = 0 and x – k = 0.


If the lines y = 3x + 1 and 2y = x + 3 are equally inclined to the line y = mx + 4, find the value of m.


Classify the following pair of line as coincident, parallel or intersecting:

 2x + y − 1 = 0 and 3x + 2y + 5 = 0


Classify the following pair of line as coincident, parallel or intersecting:

x − y = 0 and 3x − 3y + 5 = 0]


Classify the following pair of line as coincident, parallel or intersecting:

3x + 2y − 4 = 0 and 6x + 4y − 8 = 0.


Prove that the lines \[\sqrt{3}x + y = 0, \sqrt{3}y + x = 0, \sqrt{3}x + y = 1 \text { and } \sqrt{3}y + x = 1\]  form a rhombus.


Find the equation to the straight line parallel to 3x − 4y + 6 = 0 and passing through the middle point of the join of points (2, 3) and (4, −1).


Prove that the lines 2x − 3y + 1 = 0, x + y = 3, 2x − 3y = 2  and x + y = 4 form a parallelogram.


Find the angle between the lines x = a and by + c = 0..


Find the equation of the line mid-way between the parallel lines 9x + 6y − 7 = 0 and 3x + 2y + 6 = 0.

 

Show that the diagonals of the parallelogram whose sides are lx + my + n = 0, lx + my + n' = 0, mx + ly + n = 0 and mx + ly + n' = 0 include an angle π/2.


Show that the point (3, −5) lies between the parallel lines 2x + 3y − 7 = 0 and 2x + 3y + 12 = 0 and find the equation of lines through (3, −5) cutting the above lines at an angle of 45°.


Write an equation representing a pair of lines through the point (a, b) and parallel to the coordinate axes.


Three vertices of a parallelogram taken in order are (−1, −6), (2, −5) and (7, 2). The fourth vertex is


Let ABC be a triangle with A(–3, 1) and ∠ACB = θ, 0 < θ < `π/2`. If the equation of the median through B is 2x + y – 3 = 0 and the equation of angle bisector of C is 7x – 4y – 1 = 0, then tan θ is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×