English

A line perpendicular to the line segment joining the points (1, 0) and (2, 3) divides it in the ratio 1:n. Find the equation of the line. - Mathematics

Advertisements
Advertisements

Question

A line perpendicular to the line segment joining the points (1, 0) and (2, 3) divides it in the ratio 1:n. Find the equation of the line.

Sum

Solution

Line AB passes through the points A(1, 0) and B(2, 3).

∴ Slope of AB = `(3 - 0)/(2 - 1) = 3/1`

PQ ⊥ AB

Slope of AB = `3/1`

∴ Slope of PQ, m = `- 1/(3/1) = -1/3`

PQ intersects line AB at C.

Also, point C divides the line segment AB in the ratio 1 : n.

That is `"C"((1 xx 2 + "n" xx 1)/("n" + 1), (1 xx 3 + "n" xx 0)/("n" + 1))`

or `"C" (("n" + 2)/("n" + 1), 3/("n" + 1))`

Now the equation of line PQ,

`"y" - "y"_1 = "m"("x" - "x"_1)`

Where, x1 = `("n" + 2)/("n" + 1)` and y1 = `3/("n" + 1)`

`"y" - 3/("n" + 1) = -1/3("x" - ("n" + 2)/("n" + 1))`

3(n + 1)y − 9 = −[(n + 1)x − (n + 2)]

or (n + 1)x + 3(n + 1)y = n + 2 + 9 = n + 11

or (n + 1)x + 3(n + 1)y = n + 11

shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Straight Lines - Exercise 10.2 [Page 220]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 10 Straight Lines
Exercise 10.2 | Q 11 | Page 220

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the equation of the line which satisfy the given condition:

Write the equations for the x and y-axes.


Find the equation of the line which satisfy the given condition:

Passing through the point (–4, 3) with slope `1/2`.


Find the equation of the line which satisfy the given condition:

Passing though `(2, 2sqrt3)` and is inclined with the x-axis at an angle of 75°.


Find the equation of the line which satisfy the given condition:

Intersects the x-axis at a distance of 3 units to the left of origin with slope –2.


Find the equation of the line which satisfy the given condition:

Intersects the y-axis at a distance of 2 units above the origin and making an angle of 30° with the positive direction of the x-axis.


Find the equation of the line which is at a perpendicular distance of 5 units from the origin and the angle made by the perpendicular with the positive x-axis is 30°


Find the equation of a line that cuts off equal intercepts on the coordinate axes and passes through the point (2, 3).


Find equation of the line passing through the point (2, 2) and cutting off intercepts on the axes whose sum is 9.


Find equation of the line through the point (0, 2) making an angle  `(2pi)/3` with the positive x-axis. Also, find the equation of line parallel to it and crossing the y-axis at a distance of 2 units below the origin.


The length L (in centimetre) of a copper rod is a linear function of its Celsius temperature C. In an experiment, if L = 124.942 when C = 20 and L = 125.134 when C = 110, express L in terms of C


The owner of a milk store finds that, he can sell 980 litres of milk each week at Rs 14/litre and 1220 litres of milk each week at Rs 16/litre. Assuming a linear relationship between selling price and demand, how many litres could he sell weekly at Rs 17/litre?


P (a, b) is the mid-point of a line segment between axes. Show that equation of the line is `x/a + y/b = 2`


By using the concept of equation of a line, prove that the three points (3, 0), (–2, –2) and (8, 2) are collinear.


Find the values of q and p, if the equation x cos q + y sinq = p is the normal form of the line `sqrt3 x` + y + 2 = 0.


Find the area of the triangle formed by the lines y – x = 0, x + y = 0 and x – k = 0.


Classify the following pair of line as coincident, parallel or intersecting:

 2x + y − 1 = 0 and 3x + 2y + 5 = 0


Classify the following pair of line as coincident, parallel or intersecting:

x − y = 0 and 3x − 3y + 5 = 0]


Classify the following pair of line as coincident, parallel or intersecting:

3x + 2y − 4 = 0 and 6x + 4y − 8 = 0.


Prove that the lines \[\sqrt{3}x + y = 0, \sqrt{3}y + x = 0, \sqrt{3}x + y = 1 \text { and } \sqrt{3}y + x = 1\]  form a rhombus.


Find the equation to the straight line parallel to 3x − 4y + 6 = 0 and passing through the middle point of the join of points (2, 3) and (4, −1).


Find the angle between the lines x = a and by + c = 0..


Find the equation of the line mid-way between the parallel lines 9x + 6y − 7 = 0 and 3x + 2y + 6 = 0.

 

Prove that the area of the parallelogram formed by the lines a1x + b1y + c1 = 0, a1x + b1yd1 = 0, a2x + b2y + c2 = 0, a2x + b2y + d2 = 0 is  \[\left| \frac{\left( d_1 - c_1 \right)\left( d_2 - c_2 \right)}{a_1 b_2 - a_2 b_1} \right|\] sq. units.
Deduce the condition for these lines to form a rhombus.

 


Prove that the area of the parallelogram formed by the lines 3x − 4y + a = 0, 3x − 4y + 3a = 0, 4x − 3y− a = 0 and 4x − 3y − 2a = 0 is \[\frac{2}{7} a^2\] sq. units..


Show that the diagonals of the parallelogram whose sides are lx + my + n = 0, lx + my + n' = 0, mx + ly + n = 0 and mx + ly + n' = 0 include an angle π/2.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×