मराठी

A line perpendicular to the line segment joining the points (1, 0) and (2, 3) divides it in the ratio 1:n. Find the equation of the line. - Mathematics

Advertisements
Advertisements

प्रश्न

A line perpendicular to the line segment joining the points (1, 0) and (2, 3) divides it in the ratio 1:n. Find the equation of the line.

बेरीज

उत्तर

Line AB passes through the points A(1, 0) and B(2, 3).

∴ Slope of AB = `(3 - 0)/(2 - 1) = 3/1`

PQ ⊥ AB

Slope of AB = `3/1`

∴ Slope of PQ, m = `- 1/(3/1) = -1/3`

PQ intersects line AB at C.

Also, point C divides the line segment AB in the ratio 1 : n.

That is `"C"((1 xx 2 + "n" xx 1)/("n" + 1), (1 xx 3 + "n" xx 0)/("n" + 1))`

or `"C" (("n" + 2)/("n" + 1), 3/("n" + 1))`

Now the equation of line PQ,

`"y" - "y"_1 = "m"("x" - "x"_1)`

Where, x1 = `("n" + 2)/("n" + 1)` and y1 = `3/("n" + 1)`

`"y" - 3/("n" + 1) = -1/3("x" - ("n" + 2)/("n" + 1))`

3(n + 1)y − 9 = −[(n + 1)x − (n + 2)]

or (n + 1)x + 3(n + 1)y = n + 2 + 9 = n + 11

or (n + 1)x + 3(n + 1)y = n + 11

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Straight Lines - Exercise 10.2 [पृष्ठ २२०]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
पाठ 10 Straight Lines
Exercise 10.2 | Q 11 | पृष्ठ २२०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the equation of the line which satisfy the given condition:

Write the equations for the x and y-axes.


Find the equation of the line which satisfy the given condition:

Passing through the point (–4, 3) with slope `1/2`.


Find the equation of the line which satisfy the given condition:

Passing though (0, 0) with slope m.


Find the equation of the line which satisfy the given condition:

Passing though `(2, 2sqrt3)` and is inclined with the x-axis at an angle of 75°.


Find the equation of the line which satisfy the given condition:

Intersects the x-axis at a distance of 3 units to the left of origin with slope –2.


Find the equation of the line which satisfy the given condition:

The vertices of ΔPQR are P (2, 1), Q (–2, 3) and R (4, 5). Find equation of the median through the vertex R.


The vertices of ΔPQR are P (2, 1), Q (–2, 3) and R (4, 5). Find equation of the median through the vertex R.


Find the equation of the line passing through (–3, 5) and perpendicular to the line through the points (2, 5) and (–3, 6).


Find equation of the line passing through the point (2, 2) and cutting off intercepts on the axes whose sum is 9.


Find equation of the line through the point (0, 2) making an angle  `(2pi)/3` with the positive x-axis. Also, find the equation of line parallel to it and crossing the y-axis at a distance of 2 units below the origin.


The perpendicular from the origin to a line meets it at the point (– 2, 9), find the equation of the line.


The length L (in centimetre) of a copper rod is a linear function of its Celsius temperature C. In an experiment, if L = 124.942 when C = 20 and L = 125.134 when C = 110, express L in terms of C


The owner of a milk store finds that, he can sell 980 litres of milk each week at Rs 14/litre and 1220 litres of milk each week at Rs 16/litre. Assuming a linear relationship between selling price and demand, how many litres could he sell weekly at Rs 17/litre?


By using the concept of equation of a line, prove that the three points (3, 0), (–2, –2) and (8, 2) are collinear.


Find the values of q and p, if the equation x cos q + y sinq = p is the normal form of the line `sqrt3 x` + y + 2 = 0.


Find the area of the triangle formed by the lines y – x = 0, x + y = 0 and x – k = 0.


Find the image of the point (3, 8) with respect to the line x + 3y = 7 assuming the line to be a plane mirror.


If the lines y = 3x + 1 and 2y = x + 3 are equally inclined to the line y = mx + 4, find the value of m.


Classify the following pair of line as coincident, parallel or intersecting:

 2x + y − 1 = 0 and 3x + 2y + 5 = 0


Classify the following pair of line as coincident, parallel or intersecting:

x − y = 0 and 3x − 3y + 5 = 0]


Prove that the lines 2x − 3y + 1 = 0, x + y = 3, 2x − 3y = 2  and x + y = 4 form a parallelogram.


Find the angle between the lines x = a and by + c = 0..


Find the equation of the line mid-way between the parallel lines 9x + 6y − 7 = 0 and 3x + 2y + 6 = 0.

 

Prove that the area of the parallelogram formed by the lines 3x − 4y + a = 0, 3x − 4y + 3a = 0, 4x − 3y− a = 0 and 4x − 3y − 2a = 0 is \[\frac{2}{7} a^2\] sq. units..


Show that the diagonals of the parallelogram whose sides are lx + my + n = 0, lx + my + n' = 0, mx + ly + n = 0 and mx + ly + n' = 0 include an angle π/2.


Write an equation representing a pair of lines through the point (a, b) and parallel to the coordinate axes.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×