हिंदी

By using the concept of equation of a line, prove that the three points (3, 0), (–2, –2) and (8, 2) are collinear. - Mathematics

Advertisements
Advertisements

प्रश्न

By using the concept of equation of a line, prove that the three points (3, 0), (–2, –2) and (8, 2) are collinear.

योग

उत्तर

Equation of the line passing through the points A(3, 0), B(−2, –2)

y − y1 = `("y"_2 - "y"_1)/("x"_2 - "x"_1) ("x" - "x"_1)`

y − 0 = `(-2 -0)/(-2 -3) ("x" - 3)`

or y = `2/5 ("x" - 3)`

or 5y = 2x − 6

⇒ 2x − 5y − 6 = 0 

If the point C(8, 2) falls on this line then its coordinates will satisfy this equation.

∴ 2 × 8 – 5 × 2 – 6 = 0

or 16 – 16 = 0

Hence, the given points A, B, C are collinear.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Straight Lines - Exercise 10.2 [पृष्ठ २२०]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
अध्याय 10 Straight Lines
Exercise 10.2 | Q 20 | पृष्ठ २२०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the equation of the line which satisfy the given condition:

Write the equations for the x and y-axes.


Find the equation of the line which satisfy the given condition:

Passing through the point (–4, 3) with slope `1/2`.


Find the equation of the line which satisfy the given condition:

Passing though `(2, 2sqrt3)` and is inclined with the x-axis at an angle of 75°.


Find the equation of the line which satisfy the given condition:

The vertices of ΔPQR are P (2, 1), Q (–2, 3) and R (4, 5). Find equation of the median through the vertex R.


Find the equation of the line passing through (–3, 5) and perpendicular to the line through the points (2, 5) and (–3, 6).


A line perpendicular to the line segment joining the points (1, 0) and (2, 3) divides it in the ratio 1:n. Find the equation of the line.


Find the equation of a line that cuts off equal intercepts on the coordinate axes and passes through the point (2, 3).


The length L (in centimetre) of a copper rod is a linear function of its Celsius temperature C. In an experiment, if L = 124.942 when C = 20 and L = 125.134 when C = 110, express L in terms of C


P (a, b) is the mid-point of a line segment between axes. Show that equation of the line is `x/a + y/b = 2`


Point R (h, k) divides a line segment between the axes in the ratio 1:2. Find equation of the line.


Find the values of q and p, if the equation x cos q + y sinq = p is the normal form of the line `sqrt3 x` + y + 2 = 0.


Find the area of the triangle formed by the lines y – x = 0, x + y = 0 and x – k = 0.


Find the image of the point (3, 8) with respect to the line x + 3y = 7 assuming the line to be a plane mirror.


If the lines y = 3x + 1 and 2y = x + 3 are equally inclined to the line y = mx + 4, find the value of m.


Classify the following pair of line as coincident, parallel or intersecting:

 2x + y − 1 = 0 and 3x + 2y + 5 = 0


Classify the following pair of line as coincident, parallel or intersecting:

x − y = 0 and 3x − 3y + 5 = 0]


Classify the following pair of line as coincident, parallel or intersecting:

3x + 2y − 4 = 0 and 6x + 4y − 8 = 0.


Find the equation to the straight line parallel to 3x − 4y + 6 = 0 and passing through the middle point of the join of points (2, 3) and (4, −1).


Prove that the lines 2x − 3y + 1 = 0, x + y = 3, 2x − 3y = 2  and x + y = 4 form a parallelogram.


Find the angle between the lines x = a and by + c = 0..


Find the equation of the line mid-way between the parallel lines 9x + 6y − 7 = 0 and 3x + 2y + 6 = 0.

 

Prove that the area of the parallelogram formed by the lines a1x + b1y + c1 = 0, a1x + b1yd1 = 0, a2x + b2y + c2 = 0, a2x + b2y + d2 = 0 is  \[\left| \frac{\left( d_1 - c_1 \right)\left( d_2 - c_2 \right)}{a_1 b_2 - a_2 b_1} \right|\] sq. units.
Deduce the condition for these lines to form a rhombus.

 


Prove that the area of the parallelogram formed by the lines 3x − 4y + a = 0, 3x − 4y + 3a = 0, 4x − 3y− a = 0 and 4x − 3y − 2a = 0 is \[\frac{2}{7} a^2\] sq. units..


Show that the diagonals of the parallelogram whose sides are lx + my + n = 0, lx + my + n' = 0, mx + ly + n = 0 and mx + ly + n' = 0 include an angle π/2.


Show that the point (3, −5) lies between the parallel lines 2x + 3y − 7 = 0 and 2x + 3y + 12 = 0 and find the equation of lines through (3, −5) cutting the above lines at an angle of 45°.


Three vertices of a parallelogram taken in order are (−1, −6), (2, −5) and (7, 2). The fourth vertex is


Let ABC be a triangle with A(–3, 1) and ∠ACB = θ, 0 < θ < `π/2`. If the equation of the median through B is 2x + y – 3 = 0 and the equation of angle bisector of C is 7x – 4y – 1 = 0, then tan θ is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×