Advertisements
Advertisements
प्रश्न
Re-arrange suitably and find the sum in each of the following:
\[\frac{4}{13} + \frac{- 5}{8} + \frac{- 8}{13} + \frac{9}{13}\]
योग
उत्तर
\[ (\frac{4}{13} - \frac{8}{13} + \frac{9}{13}) + \frac{- 5}{8}\]
\[ = \left( \frac{4 - 8 + 9}{13} \right) + \frac{- 5}{8}\]
\[ = \frac{5}{13} + \frac{- 5}{8}\]
\[ = \frac{40 - 65}{104}\]
\[ = \frac{- 25}{104}\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
Simplify:
\[\frac{7}{9} + \frac{3}{- 4}\]
Re-arrange suitably and find the sum in each of the following:
\[\frac{2}{3} + \frac{- 4}{5} + \frac{1}{3} + \frac{2}{5}\]
Multiply:
\[\frac{5}{7} \text{by} \frac{- 3}{4}\]
Multiply:
\[\frac{- 8}{9} \text{by} \frac{3}{64}\]
Simplify:
\[\left( \frac{- 9}{4} \times \frac{5}{3} \right) + \left( \frac{13}{2} \times \frac{5}{6} \right)\]
Fill in the blanks:
The product of a positive rational number and a negative rational number is always .....
Divide:
\[- 4\ \text{by} \frac{- 3}{5}\]
If `p/q` is a rational number, then p cannot be equal to zero.
Write the following numbers in the form `p/q` where p and q are integers:
Zero
Write the rational number whose numerator and denominator are respectively as under:
25 + 15 and 81 ÷ 40