हिंदी

Ruler and compasses may be used in this question. All construction lines and arcs must be clearly shown and be of sufficient length and clarity to permit assessment. Construct a ΔABC - Mathematics

Advertisements
Advertisements

प्रश्न

Ruler and compasses may be used in this question. All construction lines and arcs must be clearly shown and be of sufficient length and clarity to permit assessment.

  1. Construct a ΔABC, in which BC = 6 cm, AB = 9 cm and angle ABC = 60°.
  2. Construct the locus of all points inside triangle ABC, which are equidistant from B and C.
  3. Construct the locus of the vertices of the triangles with BC as base and which are equal in area to triangle ABC.
  4. Mark the point Q, in your construction, which would make ΔQBC equal in area to ΔABC, and isosceles.
  5. Measure and record the length of CQ.
योग

उत्तर

 
Steps of construction:

  1. Draw a line segment BC = 6 cm.
  2. At B, draw a ray BX making an angle 60 degree and cut off BA = 9 cm.
  3. Join AC. ABC is the required triangle.
  4. Draw perpendicular bisector of BC which intersects BA in M, then any point on LM is equidistant from B and C.
  5. Through A, draw a line m || BC.
  6. The perpendicular bisector of BC and the parallel line m intersect each other at Q.
  7. Then triangle QBC is equal in area to triangle ABC. m is the locus of all points through which any triangle with base BC will be equal in area of triangle ABC.
    On measuring CQ = 8.4 cm. 
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Loci (Locus and Its Constructions) - Exercise 16 (B) [पृष्ठ २४१]

APPEARS IN

सेलिना Mathematics [English] Class 10 ICSE
अध्याय 16 Loci (Locus and Its Constructions)
Exercise 16 (B) | Q 25 | पृष्ठ २४१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

On a graph paper, draw the lines x = 3 and y = –5. Now, on the same graph paper, draw the locus of the point which is equidistant from the given lines.


Construct a triangle ABC, with AB = 6 cm, AC = BC = 9 cm. Find a point 4 cm from A and equidistant from B and C. 


Use ruler and compasses only for this question. Draw a circle of radius 4 cm and mark two chords AB and AC of the circle of lengths 6 cm and 5 cm respectively.
(i) Construct the locus of points, inside the circle, that are equidistant from A and C. prove your construction.
(ii) Construct the locus of points, inside the circle that are equidistant from AB and AC. 


Construct a triangle BCP given BC = 5 cm, BP = 4 cm and ∠PBC = 45°.

  1. Complete the rectangle ABCD such that:
    1. P is equidistant from AB and BC.
    2. P is equidistant from C and D.
  2. Measure and record the length of AB. 

Draw two intersecting lines to include an angle of 30°. Use ruler and compasses to locate points which are equidistant from these Iines and also 2 cm away from their point of intersection. How many such points exist? 


Without using set squares or protractor, construct a quadrilateral ABCD in which ∠ BAD = 45° , AD = AB = 6 cm, BC= 3.6 cm and CD=5 cm. Locate the point P on BD which is equidistant from BC and CD. 


Construct a Δ XYZ in which XY= 4 cm, YZ = 5 cm and ∠ Y = 1200. Locate a point T such that ∠ YXT is a right angle and Tis equidistant from Y and Z. Measure TZ. 


In Δ PQR, bisectors of  ∠ PQR and ∠ PRQ meet at I. Prove that I is equidistant from the three sides of the triangle , and PI bisects ∠ QPR . 


Draw and describe the lorus in  the following cases: 

The locus of points at a distance of 4 cm from a fixed line. 


Construct a Δ ABC, with AB = 6 cm, AC = BC = 9 cm; find a point 4 cm from A and equidistant from B and C.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×