हिंदी

Construct a triangle ABC, with AB = 6 cm, AC = BC = 9 cm. Find a point 4 cm from A and equidistant from B and C. - Mathematics

Advertisements
Advertisements

प्रश्न

Construct a triangle ABC, with AB = 6 cm, AC = BC = 9 cm. Find a point 4 cm from A and equidistant from B and C. 

योग

उत्तर

  
Steps of construction:

  1. Draw a line segment AB = 6 cm
  2. With A and B as centers and radius 9 cm, draw two arcs which intersect each other at C.
  3. Join AC and BC.
  4. Draw the perpendicular bisector of BC.
  5. With A as centre and radius 4 cm, draw an arc which intersects the perpendicular bisector of BC at P.
    P is the required point which is equidistant from B and C and at a distance of 4 cm from A.
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Loci (Locus and Its Constructions) - Exercise 16 (B) [पृष्ठ २४१]

APPEARS IN

सेलिना Mathematics [English] Class 10 ICSE
अध्याय 16 Loci (Locus and Its Constructions)
Exercise 16 (B) | Q 24 | पृष्ठ २४१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Use ruler and compasses only for this question:

I. Construct  ABC, where AB = 3.5 cm, BC = 6 cm and ABC = 60o.
II. Construct the locus of points inside the triangle which are equidistant from BA and BC.
III. Construct the locus of points inside the triangle which are equidistant from B and C.
IV. Mark the point P which is equidistant from AB, BC and also equidistant from B and C. Measure and records the length of PB.


Ruler and compasses may be used in this question. All construction lines and arcs must be clearly shown and be of sufficient length and clarity to permit assessment.

  1. Construct a ΔABC, in which BC = 6 cm, AB = 9 cm and angle ABC = 60°.
  2. Construct the locus of all points inside triangle ABC, which are equidistant from B and C.
  3. Construct the locus of the vertices of the triangles with BC as base and which are equal in area to triangle ABC.
  4. Mark the point Q, in your construction, which would make ΔQBC equal in area to ΔABC, and isosceles.
  5. Measure and record the length of CQ.

State the locus of a point in a rhombus ABCD, which is equidistant

  1. from AB and AD;
  2. from the vertices A and C.

Draw a straight line AB of 9 cm. Draw the locus of all points which are equidistant from A and B. Prove your statement. 


Without using set squares or protractor, construct a quadrilateral ABCD in which ∠ BAD = 45° , AD = AB = 6 cm, BC= 3.6 cm and CD=5 cm. Locate the point P on BD which is equidistant from BC and CD. 


Construct a Δ XYZ in which XY= 4 cm, YZ = 5 cm and ∠ Y = 1200. Locate a point T such that ∠ YXT is a right angle and Tis equidistant from Y and Z. Measure TZ. 


Describe completely the locus of point in the following cases: 

Centre of a ball, rolling along a straight line on a level floor. 


Use ruler and compasses only for this question. Draw a circle of radius 4 cm and mark two chords AB and AC of the circle of length f 6 cm and 5 cm respectively.
(i) Construct the locus of points, inside the circle, that are equidistant from A and C. Prove your construction.
(ii) Construct the locus of points, inside the circle, that are equidistant from AB and AC.


Use ruler and compasses only for the following questions:
Construct triangle BCP, when CB = 5 cm, BP = 4 cm, ∠PBC = 45°.
Complete the rectangle ABCD such that :
(i) P is equidistant from AB and BC and
(ii) P is equidistant from C and D. Measure and write down the length of AB.


Given ∠BAC (Fig), determine the locus of a point which lies in the interior of ∠BAC and equidistant from two lines AB and AC.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×