मराठी

Ruler and compasses may be used in this question. All construction lines and arcs must be clearly shown and be of sufficient length and clarity to permit assessment. Construct a ΔABC - Mathematics

Advertisements
Advertisements

प्रश्न

Ruler and compasses may be used in this question. All construction lines and arcs must be clearly shown and be of sufficient length and clarity to permit assessment.

  1. Construct a ΔABC, in which BC = 6 cm, AB = 9 cm and angle ABC = 60°.
  2. Construct the locus of all points inside triangle ABC, which are equidistant from B and C.
  3. Construct the locus of the vertices of the triangles with BC as base and which are equal in area to triangle ABC.
  4. Mark the point Q, in your construction, which would make ΔQBC equal in area to ΔABC, and isosceles.
  5. Measure and record the length of CQ.
बेरीज

उत्तर

 
Steps of construction:

  1. Draw a line segment BC = 6 cm.
  2. At B, draw a ray BX making an angle 60 degree and cut off BA = 9 cm.
  3. Join AC. ABC is the required triangle.
  4. Draw perpendicular bisector of BC which intersects BA in M, then any point on LM is equidistant from B and C.
  5. Through A, draw a line m || BC.
  6. The perpendicular bisector of BC and the parallel line m intersect each other at Q.
  7. Then triangle QBC is equal in area to triangle ABC. m is the locus of all points through which any triangle with base BC will be equal in area of triangle ABC.
    On measuring CQ = 8.4 cm. 
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Loci (Locus and Its Constructions) - Exercise 16 (B) [पृष्ठ २४१]

APPEARS IN

सेलिना Mathematics [English] Class 10 ICSE
पाठ 16 Loci (Locus and Its Constructions)
Exercise 16 (B) | Q 25 | पृष्ठ २४१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Describe the locus of a point P, so that:

AB2 = AP2 + BP2,

where A and B are two fixed points.


Plot the points A(2, 9), B(–1, 3) and C(6, 3) on graph paper. On the same graph paper draw the locus of point A so that the area of ΔABC remains the same as A moves. 


Construct a rhombus ABCD whose diagonals AC and BD are 8 cm and 6 cm respectively. Find by construction a point P equidistant from AB and AD and also from C and D. 


Construct a ti.PQR, in which PQ=S. 5 cm, QR=3. 2 cm and PR=4.8 cm. Draw the locus of a point which moves so that it is always 2.5 cm from Q. 


Construct a Δ XYZ in which XY= 4 cm, YZ = 5 cm and ∠ Y = 1200. Locate a point T such that ∠ YXT is a right angle and Tis equidistant from Y and Z. Measure TZ. 


In Δ ABC, B and Care fixed points. Find the locus of point A which moves such that the area of Δ ABC remains the same. 


Describe completely the locus of points in the following cases: 

Point in a plane equidistant from a given line. 


Use ruler and compass only for the following question. All construction lines and arcs must be clearly shown.

  1. Construct a ΔABC in which BC = 6.5 cm, ∠ABC = 60°, AB = 5 cm.
  2. Construct the locus of points at a distance of 3.5 cm from A.
  3. Construct the locus of points equidistant from AC and BC.
  4. Mark 2 points X and Y which are at a distance of 3.5 cm from A and also equidistant from AC and BC. Measure XY.

Construct a Δ ABC, with AB = 6 cm, AC = BC = 9 cm; find a point 4 cm from A and equidistant from B and C.


Use ruler and compass to answer this question. Construct ∠ABC = 90°, where AB = 6 cm, BC = 8 cm.

  1. Construct the locus of points equidistant from B and C.
  2. Construct the locus of points equidistant from A and B.
  3. Mark the point which satisfies both the conditions (a) and (b) as 0. Construct the locus of points keeping a fixed distance OA from the fixed point 0.
  4. Construct the locus of points which are equidistant from BA and BC.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×