मराठी

Use ruler and compass to answer this question. Construct ∠ABC = 90°, where AB = 6 cm, BC = 8 cm. Construct the locus of points equidistant from B and C - Mathematics

Advertisements
Advertisements

प्रश्न

Use ruler and compass to answer this question. Construct ∠ABC = 90°, where AB = 6 cm, BC = 8 cm.

  1. Construct the locus of points equidistant from B and C.
  2. Construct the locus of points equidistant from A and B.
  3. Mark the point which satisfies both the conditions (a) and (b) as 0. Construct the locus of points keeping a fixed distance OA from the fixed point 0.
  4. Construct the locus of points which are equidistant from BA and BC.
बेरीज

उत्तर

  1. The locus of points equidistant from B and C is on BC's perpendicular bisector.
  2. Similarly, the locus will be at the perpendicular bisector of AB.
  3. The locus will be the circle that touches all three points A, B and C.
  4. The point equidistant from BA and BC will be the angle bisector of ∠ABC.
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2023-2024 (February) Official

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Use ruler and compasses only for this question:

I. Construct  ABC, where AB = 3.5 cm, BC = 6 cm and ABC = 60o.
II. Construct the locus of points inside the triangle which are equidistant from BA and BC.
III. Construct the locus of points inside the triangle which are equidistant from B and C.
IV. Mark the point P which is equidistant from AB, BC and also equidistant from B and C. Measure and records the length of PB.


Construct a triangle ABC, with AB = 5.6 cm, AC = BC = 9.2 cm. Find the points equidistant from AB and AC; and also 2 cm from BC. Measure the distance between the two points obtained. 


Construct a Δ XYZ in which XY= 4 cm, YZ = 5 cm and ∠ Y = 1200. Locate a point T such that ∠ YXT is a right angle and Tis equidistant from Y and Z. Measure TZ. 


Draw and describe the lorus in  the following cases: 

The locus of points at a distance of 4 cm from a fixed line. 


Draw and describe the lorus in the following cases: 

The lorus of a point in rhombus ABCD which is equidistant from AB and AD .


Construct a triangle ABC, such that AB= 6 cm, BC= 7.3 cm and CA= 5.2 cm. Locate a point which is equidistant from A, B and C.


Use ruler and compass only for the following question. All construction lines and arcs must be clearly shown.

  1. Construct a ΔABC in which BC = 6.5 cm, ∠ABC = 60°, AB = 5 cm.
  2. Construct the locus of points at a distance of 3.5 cm from A.
  3. Construct the locus of points equidistant from AC and BC.
  4. Mark 2 points X and Y which are at a distance of 3.5 cm from A and also equidistant from AC and BC. Measure XY.

Using a ruler and compass only: 
(i) Construct a triangle ABC with BC = 6 cm, ∠ABC = 120° and AB = 3.5 cm.
(ii) In the above figure, draw a circle with BC as diameter. Find a point 'P' on the circumference of the circle which is equidistant from Ab and BC.
Measure ∠BCP.


Using only a ruler and compass construct ∠ABC = 120°, where AB = BC = 5 cm.
(i) Mark two points D and E which satisfy the condition that they are equidistant from both ABA and BC.
(ii) In the above figure, join AD, DC, AE and EC. Describe the figures:
(a) AECB, (b) ABD, (c) ABE.


How will you find a point equidistant from three given points A, B, C which are not in the same straight line?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×