हिंदी

Use ruler and compass to answer this question. Construct ∠ABC = 90°, where AB = 6 cm, BC = 8 cm. Construct the locus of points equidistant from B and C - Mathematics

Advertisements
Advertisements

प्रश्न

Use ruler and compass to answer this question. Construct ∠ABC = 90°, where AB = 6 cm, BC = 8 cm.

  1. Construct the locus of points equidistant from B and C.
  2. Construct the locus of points equidistant from A and B.
  3. Mark the point which satisfies both the conditions (a) and (b) as 0. Construct the locus of points keeping a fixed distance OA from the fixed point 0.
  4. Construct the locus of points which are equidistant from BA and BC.
योग

उत्तर

  1. The locus of points equidistant from B and C is on BC's perpendicular bisector.
  2. Similarly, the locus will be at the perpendicular bisector of AB.
  3. The locus will be the circle that touches all three points A, B and C.
  4. The point equidistant from BA and BC will be the angle bisector of ∠ABC.
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2023-2024 (February) Official

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Construct a triangle ABC with AB = 5.5 cm, AC = 6 cm and ∠BAC = 105°

Hence:

1) Construct the locus of points equidistant from BA and BC

2) Construct the locus of points equidistant from B and C.

3) Mark the point which satisfies the above two loci as P. Measure and write the length of PC.


Describe the locus of a point P, so that:

AB2 = AP2 + BP2,

where A and B are two fixed points.


Two straight roads AB and CD cross each other at Pat an angle of 75°  . X is a stone on the road AB, 800m from P towards B. BY taking an appropriate scale draw a figure to locate the position of a pole, which is equidistant from P and X, and is also equidistant from the roads. 


Construct a ti.PQR, in which PQ=S. 5 cm, QR=3. 2 cm and PR=4.8 cm. Draw the locus of a point which moves so that it is always 2.5 cm from Q. 


Draw and describe the lorus in the following cases: 

The Iocus of the mid-points of all parallel chords of a circle.


Describe completely the locus of points in the following cases: 

Point in a plane equidistant from a given line. 


Describe completely the locus of points in the following cases: 

Centre of a circle of varying radius and touching the two arms of ∠ ABC. 


Using a ruler and compass only: 
(i) Construct a triangle ABC with BC = 6 cm, ∠ABC = 120° and AB = 3.5 cm.
(ii) In the above figure, draw a circle with BC as diameter. Find a point 'P' on the circumference of the circle which is equidistant from Ab and BC.
Measure ∠BCP.


Ruler and compass only may be used in this question. All construction lines and arcs must be clearly shown, and be of sufficient length and clarity to permit assessment.
(i) Construct Δ ABC, in which BC = 8 cm, AB = 5 cm, ∠ ABC = 60°.
(ii) Construct the locus of point inside the triangle which are equidistant from BA and BC.
(iii) Construct the locus of points inside the triangle which are equidistant from B and C.
(iv) Mark as P, the point which is equidistant from AB, BC and also equidistant from B and C.
(v) Measure and record the length of PB.


Given ∠BAC (Fig), determine the locus of a point which lies in the interior of ∠BAC and equidistant from two lines AB and AC.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×