मराठी

State the locus of a point in a rhombus ABCD, which is equidistant from AB and AD; from the vertices A and C. - Mathematics

Advertisements
Advertisements

प्रश्न

State the locus of a point in a rhombus ABCD, which is equidistant

  1. from AB and AD;
  2. from the vertices A and C.
बेरीज

उत्तर

 
Steps of construction:

i. In rhombus ABCD, draw angle bisector of ∠A which meets in C.

ii. Join BD, which intersects AC at O.

O is the required locus.

iii. From O, draw OL ⊥ AB and OM ⊥ AD

In ΔAOL and ΔAOM

∠OLA = ∠OMA = 90°

∠OAL = ∠OAM  ...(AC is bisector of angle A)

AO = OA  ...(Common)

By Angle-Angle – side criterion of congruence,

ΔAOL ≅ ΔAOM  ...(AAS Postulate)

The corresponding parts of the congruent triangles are congruent

`=>` OL = OM ...(C.P.C.T.)

Therefore, O is equidistant from AB and AD.

Diagonal AC and BD bisect each other at right angles at O.

Therefore, AO = OC

Hence, O is equidistant from A and C. 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Loci (Locus and Its Constructions) - Exercise 16 (B) [पृष्ठ २४१]

APPEARS IN

सेलिना Mathematics [English] Class 10 ICSE
पाठ 16 Loci (Locus and Its Constructions)
Exercise 16 (B) | Q 26 | पृष्ठ २४१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Construct a triangle ABC with AB = 5.5 cm, AC = 6 cm and ∠BAC = 105°

Hence:

1) Construct the locus of points equidistant from BA and BC

2) Construct the locus of points equidistant from B and C.

3) Mark the point which satisfies the above two loci as P. Measure and write the length of PC.


Without using set squares or protractor, construct a quadrilateral ABCD in which ∠ BAD = 45° , AD = AB = 6 cm, BC= 3.6 cm and CD=5 cm. Locate the point P on BD which is equidistant from BC and CD. 


Construct a Δ XYZ in which XY= 4 cm, YZ = 5 cm and ∠ Y = 1200. Locate a point T such that ∠ YXT is a right angle and Tis equidistant from Y and Z. Measure TZ. 


In  Δ PQR, s is a point on PR such that ∠ PQS = ∠  RQS . Prove thats is equidistant from PQ and QR. 


Describe completely the locus of points in the following cases: 

Point in a plane equidistant from a given line. 


Describe completely the locus of points in the following cases: 

Centre of a circle of varying radius and touching the two arms of ∠ ABC. 


Draw and describe the locus in the following cases :

The locus of a point in the rhombus ABCD which is equidistant from the point  A and C


Construct a Δ ABC, with AB = 6 cm, AC = BC = 9 cm; find a point 4 cm from A and equidistant from B and C.


Using ruler and compasses construct:
(i) a triangle ABC in which AB = 5.5 cm, BC = 3.4 cm and CA = 4.9 cm.
(ii) the locus of point equidistant from A and C.
(iii) a circle touching AB at A and passing through C.


Use ruler and compasses only for this question. Draw a circle of radius 4 cm and mark two chords AB and AC of the circle of length f 6 cm and 5 cm respectively.
(i) Construct the locus of points, inside the circle, that are equidistant from A and C. Prove your construction.
(ii) Construct the locus of points, inside the circle, that are equidistant from AB and AC.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×