हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा १२

Show that the differential equation representing the family of curves y2 = aa2a(x+a23), where a is a postive parameter, is dddd(y2-2xydydx)3=8(ydydx)5 - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the differential equation representing the family of curves y2 = `2"a"(x + "a"^(2/3))`, where a is a postive parameter, is `(y^2 - 2xy ("d"y)/("d"x))^3 = 8(y ("d"y)/("d"x))^5`

योग

उत्तर

Given y2 = `2"a"x + 2"a"^(5/3)`  ......(1)

Differentiating equation (1) w.r.t ‘x’ we get

`2y ("d"y)/("d"x)` = 2a + 0

`("d"y)/("d"x) = (2"a")/(2y)`

`("d"y)/("d"x) = "a"/y`

⇒ a = `y ("d"y)/("d"x)`

Substituting the values of a in equation (1), we get

y2 = `2(y ("d"y)/("d"x)) x + 2(y ("d"y)/("d"x))^(5/3)`

y2 = `2x  y ("d"y)/("d"x) + 2(y ("d"y)/("d"x))^(5/3)`

`y^2 - 2xy ("d"y)/("d"x) = 2(y ("d"y)/("d"x))^(5/3)`

Taking cubic root on both sides, we get

`(y^2 - 2xy ("d"y)/("d"x))^3 = 8(y ("d"y)/("d"x))^5`

Hence y2 = 2ax + 2a3 is a solution of the differential equation

`(y^2 - 2xy ("d"y)/("d"x))^3 = 8(y ("d"y)/("d"x))^5`

shaalaa.com
Solution of Ordinary Differential Equations
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Ordinary Differential Equations - Exercise 10.4 [पृष्ठ १५७]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
अध्याय 10 Ordinary Differential Equations
Exercise 10.4 | Q 7 | पृष्ठ १५७
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×