हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा १२

Show that y = ae–3x + b, where a and b are arbitrary constants, is a solution of the differential equation ddddd2ydx2 +3dydx = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Show that y = ae–3x + b, where a and b are arbitrary constants, is a solution of the differential equation d2ydx2 +3dydx = 0

योग

उत्तर

Given y = ae3x + b  .......(1)

Differentiating equation (1) w.r.t ‘x’, we get

dydx=ae-33x(-3)+0

dydx=ae-3x(-3)  ........[ae-3x=-13dydx]

Again differentiating, we get

d2ydx2=ae-3x(+9)

d2ydx2=-13dydx×9

d2ydx2=-3dydx

d2ydx2+3dydx = 0

Therefore, y = ae3x + b is a solution of the given differential equation.

shaalaa.com
Solution of Ordinary Differential Equations
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Ordinary Differential Equations - Exercise 10.4 [पृष्ठ १५७]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
अध्याय 10 Ordinary Differential Equations
Exercise 10.4 | Q 6 | पृष्ठ १५७
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.