हिंदी

Show that the Time Required for 99% Completion is Double of the Time Required for the Completion of 90% Reaction. - Chemistry

Advertisements
Advertisements

प्रश्न

Show that the time required for 99% completion is double of the time required for the completion of 90% reaction.

For a first-order reaction, derive the relationship t99% = 2t90%.

संख्यात्मक

उत्तर

For Ist order reaction k = `2.303/"t" log  (["A"_0])/(["A"_"t"])`

For 99% completion: If [A0] = 100

[At] = 100 − 99

= 1

∴ t99% = `2.303/"k" log  100/1`

t99% = `2.303/"k" xx 2` .........(1)

∵ log 100 = 2

For 90% completion: If [A0] = 100

[At] = 100 − 90

= 10

t90% = `2.303/"k" log  100/10`

t90% = `2.303/"k"` ...........(2)

∵ log 10 = 1

From (1) and (2),

t99% = 2t90%

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2014-2015 (March) Foreign Set 2

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

The integrated rate equation for first order reaction is A → products


A first order reaction takes 30 minutes for 50% completion. Calculate the time required for 90% completion of this reaction.

(log 2 = 0.3010)


The half life period of a first order reaction is 6. 0 h . Calculate the rate constant


The half life of the homogeneous gaseous reaction \[\ce{SO2Cl2 -> SO2 + Cl2}\] which obeys first order kinetics is 8.0 minutes. How long will it take for the concentration of SO2Cl2 to be reduced to 1% of the initial value?


Read the passage given below and answer the following question.

Are there nuclear reactions going on in our bodies?

There are nuclear reactions constantly occurring in our bodies, but there are very few of them compared to the chemical reactions, and they do not affect our bodies much. All of the physical processes that take place to keep a human body running are chemical processes. Nuclear reactions can lead to chemical damage, which the body may notice and try to fix. The nuclear reaction occurring in our bodies is radioactive decay. This is the change of a less stable nucleus to a more stable nucleus. Every atom has either a stable nucleus or an unstable nucleus, depending on how big it is and on the ratio of protons to neutrons. The ratio of neutrons to protons in a stable nucleus is thus around 1 : 1 for small nuclei (Z < 20). Nuclei with too many neutrons, too few neutrons, or that are simply too big are unstable. They eventually transform to a stable form through radioactive decay. Wherever there are atoms with unstable nuclei (radioactive atoms), there are nuclear reactions occurring naturally. The interesting thing is that there are small amounts of radioactive atoms everywhere: in your chair, in the ground, in the food you eat, and yes, in your body.

The most common natural radioactive isotopes in humans are carbon-14 and potassium-40. Chemically, these isotopes behave exactly like stable carbon and potassium. For this reason, the body uses carbon-14 and potassium-40 just like it does normal carbon and potassium; building them into the different parts of the cells, without knowing that they are radioactive. In time, carbon-14 atoms decay to stable nitrogen atoms and potassium-40 atoms decay to stable calcium atoms. Chemicals in the body that relied on having a carbon-14 atom or potassium-40 atom in a certain spot will suddenly have a nitrogen or calcium atom. Such a change damages the chemical. Normally, such changes are so rare, that the body can repair the damage or filter away the damaged chemicals.

The natural occurrence of carbon-14 decay in the body is the core principle behind carbon dating. As long as a person is alive and still eating, every carbon-14 atom that decays into a nitrogen atom is replaced on average with a new carbon-14 atom. But once a person dies, he stops replacing the decaying carbon-14 atoms. Slowly the carbon-14 atoms decay to nitrogen without being replaced, so that there is less and less carbon-14 in a dead body. The rate at which carbon-14 decays is constant and follows first order kinetics. It has a half-life of nearly 6000 years, so by measuring the relative amount of carbon-14 in a bone, archeologists can calculate when the person died. All living organisms consume carbon, so carbon dating can be used to date any living organism, and any object made from a living organism. Bones, wood, leather, and even paper can be accurately dated, as long as they first existed within the last 60,000 years. This is all because of the fact that nuclear reactions naturally occur in living organisms.

Approximately how old is a fossil with 12 g of Carbon-14 if it initially possessed 32 g of Carbon-14? (Given log 2.667 = 0.4260)


Which radioactive isotope would have the longer half-life 15O or 19O? (Given rate constants for 15O and 19O are 5.63 × 10–3 s–1 and k = 2.38 × 10–2 s–1 respectively.)


The half-lives of a first-order reaction are 1.19s at 313 K and 15.45s at 293 K. Calculate the energy of activation.


Show that the half-life of zero order reaction is `t_(1/2) = ([A]_0)/(2k)`.


Calculate the half-life of a first order reaction from the rate constant given below:

4 year−1


A first order reaction takes 40 min for 30% decomposition. Calculate `"t"_(1/2)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×