Advertisements
Advertisements
प्रश्न
सिद्ध कीजिए।
cos2θ(1 + tan2θ) = 1
उत्तर
बायाँ पक्ष = cos2θ(1 + tan2θ)
= `cos^2theta xx sec^2theta` ...........`(1 + tan^2theta = sec^2theta)`
= `(costheta xx sectheta)^2`
= 12 .............(∵ cosθ × secθ = 1)
= 1
= दायाँ पक्ष
∴ बायाँ पक्ष = दायाँ पक्ष
∴ cos2θ(1 + tan2θ) = 1
APPEARS IN
संबंधित प्रश्न
यदि tanθ = `3/4` तो secθ तथा cosθ का मान ज्ञात कीजिए।
सिद्ध कीजिए।
cotθ + tanθ = cosecθ secθ
सिद्ध कीजिए।
sin4θ - cos4θ = 1 - 2cos2θ
सिद्ध कीजिए।
secθ + tanθ = `cosθ/(1 - sinθ)`
सिद्ध कीजिए।
`tantheta/(sectheta - 1) = (tantheta + sectheta + 1)/(tantheta + sectheta - 1)`
सिद्ध कीजिए।
`tanA/(1 + tan^2A)^2 + cotA/(1 + cot^2A)^2 = sinA cosA`
सिद्ध कीजिए।
sec2θ + cosec2θ = sec2θ × cosec2θ
सिद्ध कीजिए।
`1/(1 - sintheta) + 1/(1 + sintheta) = 2sec^2theta`
cot θ + tan θ = cosec θ × sec θ सिद्ध करने के लिए निम्न कृति पूर्ण करो:
कृति: बायाँ पक्ष = cot θ + tan θ
= `cosθ/sinθ + square/cosθ`
= `(square + sin^2θ)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ...........(∵ `square`)
= `1/sinθ xx 1/cosθ`
= `square` × sec θ
∴ बायाँ पक्ष = दायाँ पक्ष।
sin2θ + cos2θ का मान ज्ञात कीजिए।
हल:
Δ ABC में, ∠ABC = 90°, ∠C = θ°
AB2 + BC2 = `square` .....(पायथागोरस प्रमेय)
दोनों पक्षों में AC2 से भाग देने पर,
`"AB"^2/"AC"^2 + "BC"^2/"AC"^2 = "AC"^2/"AC"^2`
∴ `("AB"^2/"AC"^2) + ("BC"^2/"AC"^2) = 1`
परन्तु `"AB"/"AC" = square और "BC"/"AC" = square`
∴ `sin^2 theta + cos^2 theta = square`