Advertisements
Advertisements
प्रश्न
सिद्ध कीजिए।
cos2θ(1 + tan2θ) = 1
उत्तर
बायाँ पक्ष = cos2θ(1 + tan2θ)
= `cos^2theta xx sec^2theta` ...........`(1 + tan^2theta = sec^2theta)`
= `(costheta xx sectheta)^2`
= 12 .............(∵ cosθ × secθ = 1)
= 1
= दायाँ पक्ष
∴ बायाँ पक्ष = दायाँ पक्ष
∴ cos2θ(1 + tan2θ) = 1
APPEARS IN
संबंधित प्रश्न
सिद्ध कीजिए।
`sin^2theta/costheta + costheta = sectheta`
सिद्ध कीजिए।
(secθ - cosθ)(cotθ + tanθ) = tanθ secθ
सिद्ध कीजिए।
`1/(sectheta - tantheta) = sectheta + tantheta`
सिद्ध कीजिए।
sin4θ - cos4θ = 1 - 2cos2θ
सिद्ध कीजिए।
secθ + tanθ = `cosθ/(1 - sinθ)`
सिद्ध कीजिए।
sec4A (1 - sin4A) - 2tan2A = 1
सिद्ध कीजिए।
sec6x - tan6x = 1 + 3sec2x × tan2x
नीचे दिए गए बहुवैकल्पिक प्रश्न के उत्तर का सही विकल्प चुनकर लिखिए।
1 + tan2θ = कितना?
यदि sin θ = `11/61` हो, तो त्रिकोणमितीय सर्वसमिका का उपयोग करके cos θ का मान ज्ञात करो।
यदि `1/sin^2θ-1/cos^2θ-1/tan^2θ-1/cot^2θ-1/sec^2θ-1/("cosec"^2θ) = -3`, तो θ का मान ज्ञात कीजिए।