Advertisements
Advertisements
प्रश्न
सिद्ध कीजिए।
(secθ - cosθ)(cotθ + tanθ) = tanθ secθ
उत्तर
बायाँ पक्ष = (secθ - cosθ)(cotθ + tanθ)
= `(1/costheta - costheta)(costheta/sintheta + sintheta/costheta)` ...............`[sectheta = 1/costheta, cottheta = costheta/sintheta और tantheta = sintheta/costheta]`
= `((1 - cos^2theta)/(costheta))((cos^2theta + sin^2theta)/(sintheta.costheta))`
= `sin^2theta/costheta xx 1/(sintheta.costheta)` .................`[(∵ sin^2theta + cos^2theta = 1),(∴ sin^2theta = 1 - cos^2theta)]`
= `sintheta/costheta xx sintheta xx 1/sintheta xx 1/costheta`
= `sintheta/costheta xx 1/costheta`
= `tantheta xx sectheta` ........`[∵ sintheta/costheta = tantheta, 1/costheta = sectheta]`
= दायाँ पक्ष
∴ बायाँ पक्ष = दायाँ पक्ष
∴ (secθ - cosθ)(cotθ + tanθ) = tanθ secθ.
APPEARS IN
संबंधित प्रश्न
यदि sinθ = `7/25`, तो cosθ तथा tanθ का मान ज्ञात कीजिए।
सिद्ध कीजिए।
`sin^2theta/costheta + costheta = sectheta`
सिद्ध कीजिए।
`1/(sectheta - tantheta) = sectheta + tantheta`
सिद्ध कीजिए।
sin4θ - cos4θ = 1 - 2cos2θ
सिद्ध कीजिए।
secθ + tanθ = `cosθ/(1 - sinθ)`
सिद्ध कीजिए।
tan4θ + tan2θ = sec4θ - sec2θ
सिद्ध कीजिए।
sec6x - tan6x = 1 + 3sec2x × tan2x
सिद्ध कीजिए।
`(sintheta - costheta + 1)/(sintheta + costheta - 1) = 1/(sectheta - tantheta)`
cot θ + tan θ = cosec θ × sec θ सिद्ध करने के लिए निम्न कृति पूर्ण करो:
कृति: बायाँ पक्ष = cot θ + tan θ
= `cosθ/sinθ + square/cosθ`
= `(square + sin^2θ)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ...........(∵ `square`)
= `1/sinθ xx 1/cosθ`
= `square` × sec θ
∴ बायाँ पक्ष = दायाँ पक्ष।
यदि `1/sin^2θ-1/cos^2θ-1/tan^2θ-1/cot^2θ-1/sec^2θ-1/("cosec"^2θ) = -3`, तो θ का मान ज्ञात कीजिए।