Advertisements
Advertisements
प्रश्न
सिद्ध कीजिए।
`1/(sectheta - tantheta) = sectheta + tantheta`
उत्तर
बायाँ पक्ष = `1/(sectheta - tantheta)`
= `1/((sectheta - tantheta)) xx ((sectheta + tantheta))/((sectheta + tantheta))`
= `(sectheta + tantheta)/(sec^2theta - tan^2theta)`
= `(sectheta + tantheta)/1` ............`[(∵1 + tan^2theta = sec^2theta),(∴sec^2theta - tan^2theta = 1)]`
= `sectheta + tantheta`
= दायाँ पक्ष
∴ बायाँ पक्ष = दायाँ पक्ष
∴ `1/(sectheta - tantheta) = sectheta + tantheta`
APPEARS IN
संबंधित प्रश्न
यदि sinθ = `7/25`, तो cosθ तथा tanθ का मान ज्ञात कीजिए।
सिद्ध कीजिए।
(secθ - cosθ)(cotθ + tanθ) = tanθ secθ
सिद्ध कीजिए।
secθ + tanθ = `cosθ/(1 - sinθ)`
सिद्ध कीजिए।
`tanA/(1 + tan^2A)^2 + cotA/(1 + cot^2A)^2 = sinA cosA`
सिद्ध कीजिए।
cot2θ - tan2θ = cosec2θ - sec2θ
सिद्ध कीजिए।
`tantheta/(sectheta + 1) = (sectheta - 1)/tantheta`
cot θ + tan θ = cosec θ × sec θ सिद्ध करने के लिए निम्न कृति पूर्ण करो:
कृति: बायाँ पक्ष = cot θ + tan θ
= `cosθ/sinθ + square/cosθ`
= `(square + sin^2θ)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ...........(∵ `square`)
= `1/sinθ xx 1/cosθ`
= `square` × sec θ
∴ बायाँ पक्ष = दायाँ पक्ष।
यदि sin θ = `11/61` हो, तो त्रिकोणमितीय सर्वसमिका का उपयोग करके cos θ का मान ज्ञात करो।
θ का निरसन कीजिए:
x = r cosθ तथा y = r sinθ
sin2θ + cos2θ का मान ज्ञात कीजिए।
हल:
Δ ABC में, ∠ABC = 90°, ∠C = θ°
AB2 + BC2 = `square` .....(पायथागोरस प्रमेय)
दोनों पक्षों में AC2 से भाग देने पर,
`"AB"^2/"AC"^2 + "BC"^2/"AC"^2 = "AC"^2/"AC"^2`
∴ `("AB"^2/"AC"^2) + ("BC"^2/"AC"^2) = 1`
परन्तु `"AB"/"AC" = square और "BC"/"AC" = square`
∴ `sin^2 theta + cos^2 theta = square`