Advertisements
Advertisements
प्रश्न
नीचे दिए गए बहुवैकल्पिक प्रश्न के उत्तर का सही विकल्प चुनकर लिखिए।
1 + tan2θ = कितना?
पर्याय
cot2θ
cosec2θ
sec2θ
tan2θ
उत्तर
1 + tan2θ = sec2θ
APPEARS IN
संबंधित प्रश्न
सिद्ध कीजिए।
(secθ - cosθ)(cotθ + tanθ) = tanθ secθ
सिद्ध कीजिए।
cot2θ - tan2θ = cosec2θ - sec2θ
सिद्ध कीजिए।
`1/(1 - sintheta) + 1/(1 + sintheta) = 2sec^2theta`
सिद्ध कीजिए।
`(sintheta - costheta + 1)/(sintheta + costheta - 1) = 1/(sectheta - tantheta)`
यदि sinθ = `11/61`, तो सर्वसमिका का उपयोग करके cosθ का मान ज्ञात कीजिए।
यदि sin θ = cos θ हो, तो θ का मान कितना होगा?
cot θ + tan θ = cosec θ × sec θ सिद्ध करने के लिए निम्न कृति पूर्ण करो:
कृति: बायाँ पक्ष = cot θ + tan θ
= `cosθ/sinθ + square/cosθ`
= `(square + sin^2θ)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ...........(∵ `square`)
= `1/sinθ xx 1/cosθ`
= `square` × sec θ
∴ बायाँ पक्ष = दायाँ पक्ष।
यदि sin θ = `11/61` हो, तो त्रिकोणमितीय सर्वसमिका का उपयोग करके cos θ का मान ज्ञात करो।
यदि `1/sin^2θ-1/cos^2θ-1/tan^2θ-1/cot^2θ-1/sec^2θ-1/("cosec"^2θ) = -3`, तो θ का मान ज्ञात कीजिए।
sin2θ + cos2θ का मान ज्ञात कीजिए।
हल:
Δ ABC में, ∠ABC = 90°, ∠C = θ°
AB2 + BC2 = `square` .....(पायथागोरस प्रमेय)
दोनों पक्षों में AC2 से भाग देने पर,
`"AB"^2/"AC"^2 + "BC"^2/"AC"^2 = "AC"^2/"AC"^2`
∴ `("AB"^2/"AC"^2) + ("BC"^2/"AC"^2) = 1`
परन्तु `"AB"/"AC" = square और "BC"/"AC" = square`
∴ `sin^2 theta + cos^2 theta = square`