Advertisements
Advertisements
प्रश्न
Simplify: (a + b)2 – (a – b)2
उत्तर
Applying the identities
(a + b)2 = a2 + 2ab + b2
(a – b)2 = a2 – 2ab + b2
(a + b)2 – (a – b)2 = a2 + 2ab + b2 – [a2 – 2ab + b2]
= a2 + 2ab + b2 – a2 + 2ab – b2
= a2(1 – 1) + ab(2 + 2) + b2(1 – 1)
= 0a2 + 4ab + 0b2 = 4ab
(a + b)2 – (a – b)2 = 4ab
APPEARS IN
संबंधित प्रश्न
Factorise the following expressions
y2 – 10y + 25
(a – b) ______ = a2 – 2ab + b2
(a – b)2 + ______ = a2 – b2
Using suitable identities, evaluate the following.
(9.9)2
Factorise the following, using the identity a2 – 2ab + b2 = (a – b)2.
4a2 – 4ab + b2
Factorise the following, using the identity a2 – 2ab + b2 = (a – b)2.
p2y2 – 2py + 1
Factorise the following, using the identity a2 – 2ab + b2 = (a – b)2.
`x^2/4 - 2x + 4`
Factorise the following, using the identity a2 – 2ab + b2 = (a – b)2.
a2y3 – 2aby2 + b2y
Factorise the following, using the identity a2 – 2ab + b2 = (a – b)2.
`9y^2 - 4xy + (4x^2)/9`
Factorise the following.
y2 – 2y – 15