Advertisements
Advertisements
प्रश्न
Simplify, giving Solution with positive index
`(1/("4ab"^2"c"))^2 div (3/(2"a"^2"bc"^2))^4`
उत्तर
`(1/("4ab"^2"c"))^2 div (3/(2"a"^2"bc"^2))^4`
`= (1/"4ab"^2"c")^2 xx ((2"a"^2"bc"^2)/3)^4`
`= 1^2/(4^2"a"^2"b"^(2xx2) ."c"^2) xx (2^4 "a"^(2xx4) . "b"^4 . "c"^(2xx4))/3^4`
`= 1^2/3^4 xx "a"^(8-2) "b"^(4 - 4) "c"^(8-2)` (∵ 24 = 42)
`= 1/(3 xx 3 xx 3 xx 3) "a"^6"b"^0"c"^6`
`= 1/81 "a"^6"c"^6` (∵ b0 = 1)
APPEARS IN
संबंधित प्रश्न
Evaluate: (35 x 47 x 58)0
Simplify, giving Solution with positive index
x2y3. 6x5y. 9x3y4
Simplify, giving Solution with positive index
(102)3 (x8)12
Simplify, giving Solution with positive index
(-2)2 × (0)3 × (3)3
Simplify, giving Solution with positive index
(2a3)4 (4a2)2
Simplify, giving Solution with positive index
`((5"x"^7)^3 . (10"x"^2)^2)/(2"x"^6)^7 = (5^3 "x"^(7xx3) . 10^2 . "x"^(2xx2))/(2^7. "x"^(6xx7))`
Simplify, giving Solution with positive index
`((7 "p"^2 "q"^9 "r"^5)^2 (4 "pqr")^3)/(14 "p"^6 "q"^10 "r"^4)^2`
Simplify and express the Solution in the positive exponent form:
`(36 xx (-6)^2 xx 3^6)/(12^3 xx 3^5)`
If m = -2 and n = 2; find the values of m2 + n2 - 2mn.
If m2 = -2 and n = 2; find the values of: 6m-3 + 4n2