Advertisements
Advertisements
प्रश्न
Solve :
`[2xy]/[ x + y ] = 3/2`
`[xy]/[ 2x - y ] = -3/10`
x + y ≠ 0 and 2x - y ≠ 0
उत्तर
`[2xy]/[ x + y ] = 3/2`
⇒ `[ x + y ]/[ xy ] = 4/3`
⇒ `1/x + 1/y = 4/3` .....(1)
`[xy]/[ 2x - y ] = -3/10`
⇒ `[ 2x - y ]/[ xy ] = - 10/3`
⇒ `-1/x + 2/y = - 10/3` ......(2)
Let `1/x = u and 1/y = v`
Then, equations (1) and (2) become
u + v = `4/3 and - u + 2v = - 10/3`
⇒ 3u + 3v = 4 and -3u + 6v = -10
Adding, We have
9v = - 6
⇒ v = `-6/9 = - 2/3`
⇒ `1/y = - 2/3 `
⇒ y = `-3/2`
Substituting y = `-3/2` in (1), We have
`1/x - 2/3 = 4/3`
⇒ `1/x = 6/3 = 2`
⇒ x = `1/2`
Hence, x = `1/2 and y = - 3/2`
APPEARS IN
संबंधित प्रश्न
Solve :
`9/x - 4/y = 8`
`13/x + 7/y = 101`
Solve the pairs of equations :
`3/x + 2/y = 10`
`9/x - 7/y = 10.5`
Solve :
5x + `8/y` = 19
3x - `4/y` = 7
Solve :
4x + `6/y` = 15 and 3x - `4/y` = 7. Hence, find a if y = ax - 2.
Solve :
`20/[ x + y ] + 3/[ x - y ] = 7`
`8/[ x - y ] - 15/[ x + y ] = 5`
Solve :
`34/[ 3x + 4y ] + 15/[ 3x - 2y ] = 5`
`25/[ 3x - 2y ] - 8.50/[ 3x + 4y ] = 4.5`
Solve:
x + y = 2xy
x - y = 6xy
Solve :
x+ y = 7xy
2x - 3y = - xy
Solve :
`a/x - b/y = 0`
`(ab^2)/x + (a^2b)/y = a^2 + b^2`
Solve :
`3/(2x) + 2/(3y) = -1/3`
`3/(4x) + 1/(2y) = -1/8`