Advertisements
Advertisements
प्रश्न
Solve :
4x + `6/y` = 15 and 3x - `4/y` = 7. Hence, find a if y = ax - 2.
उत्तर
4x + `6/y` = 15 .....(1)
3x - `4/y` = 7 .....(2)
Multiplying (1) by 4 and (2) by 6
16x + `24/y` = 60 ....(3)
18x - `24/y` = 42 ....(4)
Adding (3) and (4), We get
16x + `24/y` = 60
+ 18x - `24/y` = 42
34x = 102
x = 3
Substituting x = 3 in (1), We get
4(3) + `6/y` = 15
⇒ `6/y` = 15 - 12
⇒ y = `6/3` = 2
Now,
y = ax - 2
2 = a(3) - 2
3a = 4
a = `4/3 = 1 1/3`
APPEARS IN
संबंधित प्रश्न
Solve :
`9/x - 4/y = 8`
`13/x + 7/y = 101`
Solve the pairs of equations :
`3/x + 2/y = 10`
`9/x - 7/y = 10.5`
Solve :
5x + `8/y` = 19
3x - `4/y` = 7
Solve :
`3/x - 2/y = 0 and 2/x + 5/y = 19` Hence, find 'a' if y = ax + 3.
Solve :
`20/[ x + y ] + 3/[ x - y ] = 7`
`8/[ x - y ] - 15/[ x + y ] = 5`
Solve :
`34/[ 3x + 4y ] + 15/[ 3x - 2y ] = 5`
`25/[ 3x - 2y ] - 8.50/[ 3x + 4y ] = 4.5`
Solve:
x + y = 2xy
x - y = 6xy
Solve :
x+ y = 7xy
2x - 3y = - xy
Solve :
`a/x - b/y = 0`
`(ab^2)/x + (a^2b)/y = a^2 + b^2`
Solve :
`3/(2x) + 2/(3y) = -1/3`
`3/(4x) + 1/(2y) = -1/8`