हिंदी

Solve : A/X - B/Y = 0 (Ab^2)/X + (A^2b)/Y = A^2 + B^2 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve :
`a/x - b/y = 0`

`(ab^2)/x + (a^2b)/y = a^2 + b^2`

योग

उत्तर

Given equation are `a/x - b/y = 0 and (ab^2)/x + (a^2b)/y = a^2 + b^2`

Taking `1/x = u and 1/y = v`, the above system of equations become
au - bv + 0 = 0
ab2u + a2bv - ( a2 + b2 ) = 0
By cross-multiplication, we have
`u/[ -b xx [-( a^2 + b^2 )] - a^2b xx 0 ] = [-v]/[ a xx [-( a^2 + b^2 )] - ab^2 xx 0 ] = 1/[ a xx a^2b - ab^2 xx ( - b )]`

⇒ `u/[b( a^2 + b^2 )] = (-v)/[ - a( a^2 + b^2 )] = 1/[a^3b + ab^3 ]`

⇒ `u/[b( a^2 + b^2 )] = v/[ a( a^2 + b^2 )] = 1/[ab(a^2 + b^2 )]`

⇒ `u = [b( a^2 + b^2 )]/[ab( a^2 + b^2 )]  and  v = [a( a^2 + b^2 )]/[ ab( a^2 + b^2 )]`

⇒ u = `1/a`  and v = `1/b`

⇒ `1/x = 1/a  and 1/y = 1/b` 

⇒ x =a and y = b

shaalaa.com
Equations Reducible to Linear Equations
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Simultaneous (Linear) Equations (Including Problems) - Exercise 6 (D) [पृष्ठ ८८]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
अध्याय 6 Simultaneous (Linear) Equations (Including Problems)
Exercise 6 (D) | Q 8 | पृष्ठ ८८
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×