Advertisements
Advertisements
Question
Solve :
`a/x - b/y = 0`
`(ab^2)/x + (a^2b)/y = a^2 + b^2`
Solution
Given equation are `a/x - b/y = 0 and (ab^2)/x + (a^2b)/y = a^2 + b^2`
Taking `1/x = u and 1/y = v`, the above system of equations become
au - bv + 0 = 0
ab2u + a2bv - ( a2 + b2 ) = 0
By cross-multiplication, we have
`u/[ -b xx [-( a^2 + b^2 )] - a^2b xx 0 ] = [-v]/[ a xx [-( a^2 + b^2 )] - ab^2 xx 0 ] = 1/[ a xx a^2b - ab^2 xx ( - b )]`
⇒ `u/[b( a^2 + b^2 )] = (-v)/[ - a( a^2 + b^2 )] = 1/[a^3b + ab^3 ]`
⇒ `u/[b( a^2 + b^2 )] = v/[ a( a^2 + b^2 )] = 1/[ab(a^2 + b^2 )]`
⇒ `u = [b( a^2 + b^2 )]/[ab( a^2 + b^2 )] and v = [a( a^2 + b^2 )]/[ ab( a^2 + b^2 )]`
⇒ u = `1/a` and v = `1/b`
⇒ `1/x = 1/a and 1/y = 1/b`
⇒ x =a and y = b
APPEARS IN
RELATED QUESTIONS
Solve :
`9/x - 4/y = 8`
`13/x + 7/y = 101`
Solve the pairs of equations :
`3/x + 2/y = 10`
`9/x - 7/y = 10.5`
Solve :
5x + `8/y` = 19
3x - `4/y` = 7
Solve :
4x + `6/y` = 15 and 3x - `4/y` = 7. Hence, find a if y = ax - 2.
Solve :
`3/x - 2/y = 0 and 2/x + 5/y = 19` Hence, find 'a' if y = ax + 3.
Solve :
`20/[ x + y ] + 3/[ x - y ] = 7`
`8/[ x - y ] - 15/[ x + y ] = 5`
Solve:
x + y = 2xy
x - y = 6xy
Solve :
x+ y = 7xy
2x - 3y = - xy
Solve :
`[2xy]/[ x + y ] = 3/2`
`[xy]/[ 2x - y ] = -3/10`
x + y ≠ 0 and 2x - y ≠ 0
Solve :
`3/(2x) + 2/(3y) = -1/3`
`3/(4x) + 1/(2y) = -1/8`