Advertisements
Advertisements
Question
Solve :
`3/(2x) + 2/(3y) = -1/3`
`3/(4x) + 1/(2y) = -1/8`
Solution
Given equations are `3/(2x) + 2/(3y) = -1/3 and 3/(4x) + 1/(2y) = -1/8`
Let `1/x = u and 1/y = v`
Then, the system of equations become
`3/2u + 2/3v = -1/3 and 3/4u + 1/2v = -1/8`
⇒ `[ 9u + 4v ]/6 = -1/3 and [ 3u + 2v ]/4 = -1/8`
⇒ 27u + 12v = -6 and 24u + 16v = -4
⇒ 27u + 12v + 6 = 0 and 24u + 16v + 4 = 0
⇒ `u/[ 12 xx 4 - 16 xx 6 ] = (- v)/[ 27 xx 4 - 24 xx 6 ] = 1/[ 27 xx 16 - 24 xx 12 ]`
⇒ `u/[ 48 - 96 ] = (- v)/[ 108 - 144 ] = 1/[ 432 - 288 ]`
⇒ `u/[ -48 ] = (- v)/[ - 36 ] = 1/[ 144 ]`
⇒ `u/[ -48 ] = ( v)/[ 36 ] = 1/[ 144 ]`
⇒ `u = [ -48 ]/144 = 1/3 and v = 36/144 = 1/4 `
⇒ `1/x = - 1/3 and 1/y = 1/4`
⇒ x = - 3 and y = 4.
APPEARS IN
RELATED QUESTIONS
Solve :
`9/x - 4/y = 8`
`13/x + 7/y = 101`
Solve the pairs of equations :
`3/x + 2/y = 10`
`9/x - 7/y = 10.5`
Solve :
5x + `8/y` = 19
3x - `4/y` = 7
Solve :
4x + `6/y` = 15 and 3x - `4/y` = 7. Hence, find a if y = ax - 2.
Solve :
`3/x - 2/y = 0 and 2/x + 5/y = 19` Hence, find 'a' if y = ax + 3.
Solve :
`20/[ x + y ] + 3/[ x - y ] = 7`
`8/[ x - y ] - 15/[ x + y ] = 5`
Solve :
`34/[ 3x + 4y ] + 15/[ 3x - 2y ] = 5`
`25/[ 3x - 2y ] - 8.50/[ 3x + 4y ] = 4.5`
Solve:
x + y = 2xy
x - y = 6xy
Solve :
x+ y = 7xy
2x - 3y = - xy
Solve :
`a/x - b/y = 0`
`(ab^2)/x + (a^2b)/y = a^2 + b^2`