Advertisements
Advertisements
Question
Solve the pairs of equations :
`3/x + 2/y = 10`
`9/x - 7/y = 10.5`
Solution
`3/x + 2/y = 10` .....(1)
`9/x - 7/y = 10.5` .....(2)
Multiplying equation (1) by 3, We get
`9/x + 6/y = 30` ......(3)
Subtracting (2) from (3), We get
`9/x + 6/y = 30`
- `9/x - 7/y = 10.5`
- + -
`13/y = 19.5`
`y = 13/19.5 = 2/3`
From (1),
`3/x + [ 2 xx 3 ]/2 = 10`
⇒ `3/x + 3 = 10`
⇒ `3/x = 7`
⇒ x = `3/7`
APPEARS IN
RELATED QUESTIONS
Solve :
`9/x - 4/y = 8`
`13/x + 7/y = 101`
Solve :
5x + `8/y` = 19
3x - `4/y` = 7
Solve :
4x + `6/y` = 15 and 3x - `4/y` = 7. Hence, find a if y = ax - 2.
Solve :
`3/x - 2/y = 0 and 2/x + 5/y = 19` Hence, find 'a' if y = ax + 3.
Solve :
`20/[ x + y ] + 3/[ x - y ] = 7`
`8/[ x - y ] - 15/[ x + y ] = 5`
Solve :
`34/[ 3x + 4y ] + 15/[ 3x - 2y ] = 5`
`25/[ 3x - 2y ] - 8.50/[ 3x + 4y ] = 4.5`
Solve:
x + y = 2xy
x - y = 6xy
Solve :
x+ y = 7xy
2x - 3y = - xy
Solve :
`a/x - b/y = 0`
`(ab^2)/x + (a^2b)/y = a^2 + b^2`
Solve :
`3/(2x) + 2/(3y) = -1/3`
`3/(4x) + 1/(2y) = -1/8`