Advertisements
Advertisements
Question
Solve :
`34/[ 3x + 4y ] + 15/[ 3x - 2y ] = 5`
`25/[ 3x - 2y ] - 8.50/[ 3x + 4y ] = 4.5`
Solution
Let a = 3x + 4y and b = 3x - 2y
∴ `34/[ 3x + 4y ] + 15/[ 3x - 2y ] = 5`
⇒ `34/a + 15/b = 5` .....(1)
`25/[ 3x - 2y ] - 8.50/[ 3x + 4y ] = 4.5`
⇒ `- 8.50/a + 25/b = 4.5` .....(2)
Multiply equation (2) by 4, We get :
`- 34/a + 100/b = 18` ......(3)
Adding equation (1) and (3)
`- 34/a + 100/b = 18`
+ `34/a + 15/b = 5`
`115/b = 23`
b = 5
3x - 2y = 5 .......(4)
Substituting b = 5 in equation (1), We get
`34/a + 15/b = 5`
`34/a + 15/5 = 5`
`34/a = 2`
2a = 34
a = 17
3x + 4y = 17 ......(5)
Subtracting equation (5) from (4), We get :
3x - 2y = 5
- 3x + 4y = 17
- - -
- 6y = - 12
y = 2
Substituting y = 2 in equation (4), We get
3x - 2(2) = 5
3x = 9
x = 3
∴ Solution is x = 3 and y = 2.
APPEARS IN
RELATED QUESTIONS
Solve :
`9/x - 4/y = 8`
`13/x + 7/y = 101`
Solve the pairs of equations :
`3/x + 2/y = 10`
`9/x - 7/y = 10.5`
Solve :
5x + `8/y` = 19
3x - `4/y` = 7
Solve :
4x + `6/y` = 15 and 3x - `4/y` = 7. Hence, find a if y = ax - 2.
Solve :
`3/x - 2/y = 0 and 2/x + 5/y = 19` Hence, find 'a' if y = ax + 3.
Solve :
`20/[ x + y ] + 3/[ x - y ] = 7`
`8/[ x - y ] - 15/[ x + y ] = 5`
Solve:
x + y = 2xy
x - y = 6xy
Solve :
x+ y = 7xy
2x - 3y = - xy
Solve :
`[2xy]/[ x + y ] = 3/2`
`[xy]/[ 2x - y ] = -3/10`
x + y ≠ 0 and 2x - y ≠ 0
Solve :
`3/(2x) + 2/(3y) = -1/3`
`3/(4x) + 1/(2y) = -1/8`