Advertisements
Advertisements
प्रश्न
Solve :
`3/x - 2/y = 0 and 2/x + 5/y = 19` Hence, find 'a' if y = ax + 3.
उत्तर
`3/x - 2/y = 0` ......(1)
`2/x + 5/y = 19` .......(2)
Multiplying equation no. (1) by 5 and (2) by 2.
`15/x - 10/y = 0` ........(3)
`4/x + 10/y = 38` ........(4)
Adding (3) and (4),
`15/x - 10/y = 0`
+ `4/x + 10/y = 38`
`19/x = 38`
x = `1/2`
From (1)
`3(1/2) - 2/y = 0`
y = `1/3`
∴ y = ax + 3
`1/3 = a(1/2) + 3`
`a/2 = -8/3`
`a = -16/3`
APPEARS IN
संबंधित प्रश्न
Solve :
`9/x - 4/y = 8`
`13/x + 7/y = 101`
Solve the pairs of equations :
`3/x + 2/y = 10`
`9/x - 7/y = 10.5`
Solve :
5x + `8/y` = 19
3x - `4/y` = 7
Solve :
4x + `6/y` = 15 and 3x - `4/y` = 7. Hence, find a if y = ax - 2.
Solve :
`20/[ x + y ] + 3/[ x - y ] = 7`
`8/[ x - y ] - 15/[ x + y ] = 5`
Solve :
`34/[ 3x + 4y ] + 15/[ 3x - 2y ] = 5`
`25/[ 3x - 2y ] - 8.50/[ 3x + 4y ] = 4.5`
Solve:
x + y = 2xy
x - y = 6xy
Solve :
`a/x - b/y = 0`
`(ab^2)/x + (a^2b)/y = a^2 + b^2`
Solve :
`[2xy]/[ x + y ] = 3/2`
`[xy]/[ 2x - y ] = -3/10`
x + y ≠ 0 and 2x - y ≠ 0
Solve :
`3/(2x) + 2/(3y) = -1/3`
`3/(4x) + 1/(2y) = -1/8`