Advertisements
Advertisements
प्रश्न
Solve the given quadratic equation for x : 9x2 – 9(a + b)x + (2a2 + 5ab + 2b2) = 0 ?
उत्तर
\[9 x^2 - 9\left( a + b \right)x + \left( 2 a^2 + 5ab + 2 b^2 \right) = 0\]
\[ \Rightarrow 9 x^2 - 3\left\{ \left( 2a + b \right) + \left( a + 2b \right) \right\} + \left( 2 a^2 + 4ab + ab + 2 b^2 \right) = 0\]
\[ \Rightarrow 9 x^2 - 3\left\{ \left( 2a + b \right) + \left( a + 2b \right) \right\}x + \left\{ 2a\left( a + 2b \right) + b\left( a + 2b \right) \right\} = 0\]
\[ \Rightarrow 9 x^2 - 3\left\{ \left( 2a + b \right) + \left( a + 2b \right) \right\}x + \left( 2a + b \right)\left( a + 2b \right) = 0\]
\[\Rightarrow 9 x^2 - 3\left( 2a + b \right)x - 3\left( a + 2b \right)x + \left( 2a + b \right)\left( a + 2b \right) = 0\]
\[ \Rightarrow 3x\left\{ 3x - \left( 2a + b \right) \right\} - \left( a + 2b \right)\left\{ 3x - \left( 2a + b \right) \right\} = 0\]
\[ \Rightarrow \left\{ 3x - \left( a + 2b \right) \right\}\left\{ 3x - \left( 2a + b \right) \right\} = 0\]
\[ \Rightarrow 3x - \left( a + 2b \right) = 0 or 3x - \left( 2a + b \right) = 0\]
\[ \Rightarrow 3x = a + 2b or 3x = 2a + b\]
\[ \Rightarrow x = \frac{a + 2b}{3} or x = \frac{2a + b}{3}\]
APPEARS IN
संबंधित प्रश्न
Solve the following quadratic equations by factorization:
`m/nx^2+n/m=1-2x`
The sum of the squares of two numbers as 233 and one of the numbers as 3 less than twice the other number find the numbers.
`8x^2-14x-15=0`
Solve the following quadratic equation by factorization: \[\frac{a}{x - b} + \frac{b}{x - a} = 2\]
If the sum and product of the roots of the equation kx2 + 6x + 4k = 0 are real, then k =
If 2 is a root of the equation x2 + ax + 12 = 0 and the quadratic equation x2 + ax + q = 0 has equal roots, then q =
The values of k for which the quadratic equation \[16 x^2 + 4kx + 9 = 0\] has real and equal roots are
Solve equation using factorisation method:
`6/x = 1 + x`
Solve equation using factorisation method:
2x2 – 9x + 10 = 0, when:
- x ∈ N
- x ∈ Q
Five years ago, a woman’s age was the square of her son’s age. Ten years later her age will be twice that of her son’s age. Find:
The age of the son five years ago.