हिंदी

A Cylindrical Tub, Whose Diameter is 12 Cm and Height 15 Cm is Full of Ice-cream. the Whole Ice-cream is to Be Divided into 10 Children in Equal Ice-cream Cones, - Mathematics

Advertisements
Advertisements

प्रश्न

A cylindrical tub, whose diameter  is 12 cm and height 15 cm is full of ice-cream. The whole ice-cream is to be divided into 10 children in equal ice-cream cones, with conical base surmounted by hemispherical top. If the height of conical portion is twice the diameter of base, find the diameter of conical part of ice-cream cone ?

उत्तर

Let R and H be the radius and height of the cylindrical tub, respectively.
Given: Diameter of the cylindrical tub = 12 cm
∴ Radius, R = 6 cm

Height of the cylindrical tub, H = 15 cm

Volume of the ice-cream in the cylindrical tub =\[\pi R^2 H = \pi \times \left( 6 \right)^2 \times 15 = 540\pi {cm}^3\]

Let the diameter of the cone be d cm.
∴ Height of the conical portion = 2d cm

Radius of the hemispherical top = \[\frac{d}{2}\]  cm

It is given that the ice-cream is divided among 10 children in equal ice-cream cones.
∴ Volume of the ice-cream in the cylindrical tub = 10 × Volume of each ice-cream cone
⇒ Volume of the cylinder = 10 × (Volume of the cone + Volume of the hemisphere)

\[\Rightarrow 540\pi = 10 \times \left[ \frac{1}{3}\pi \times \left( \frac{d}{2} \right)^2 \times 2d + \frac{2}{3}\pi \times \left( \frac{d}{2} \right)^3 \right]\]
\[ \Rightarrow 540\pi = 10 \times \frac{1}{3}\pi \left( \frac{d}{2} \right)^2 \left( 2d + 2 \times \frac{d}{2} \right)\]
\[ \Rightarrow 540\pi = \frac{5}{2}\pi d^3 \]
\[ \Rightarrow d^3 = \frac{540 \times 2}{5} = 216\]
\[ \Rightarrow d^3 = \left( 6 \right)^3 \]
\[ \Rightarrow d = 6\]

Therefore, the diameter of the conical part of the ice-cream cone is 6 cm.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2015-2016 (March) Foreign Set 1

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

A hemispherical bowl of internal diameter 36 cm contains liquid. This liquid is filled into 72 cylindrical bottles of diameter 6 cm. Find the height of each bottle, if 10% liquid is wasted in this transfer.


A cubical block of side 7 cm is surmounted by a hemisphere. What is the greatest diameter the hemisphere can have? Find the surface area of the solid. [Use `pi = 22/7`]


The diameters of the lower and upper ends of a bucket in the form of a frustum of a cone are 10 cm and 30 cm respectively. If its height is 24 cm, find:

1) The area of the metal sheet used to make the bucket.

2) Why we should avoid the bucket made by ordinary plastic? [Use π = 3.14]


A solid cuboid of iron with dimensions 53 cm ⨯ 40 cm ⨯ 15 cm is melted and recast into a cylindrical pipe. The outer and inner diameters of pipe are 8 cm and 7 cm respectively. Find the length of pipe.


A solid metal sphere of 6 cm diameter is melted and a circular sheet of thickness 1 cm is prepared. Determine the diameter of the sheet.


Find the ratio of the volume of a cube to that of a sphere which will fit inside it.


A cone of height 24 cm and radius of base 6 cm is made up of modelling clay. A child reshapes it in the form of a sphere. Find the radius of the sphere and hence find the surface area of this sphere.


If two solid hemispheres of same base radius r are joined together along their bases, then curved surface area of this new solid is ______.


The boilers are used in thermal power plants to store water and then used to produce steam. One such boiler consists of a cylindrical part in middle and two hemispherical parts at its both ends.

Length of the cylindrical part is 7 m and radius of cylindrical part is `7/2` m.

Find the total surface area and the volume of the boiler. Also, find the ratio of the volume of cylindrical part to the volume of one hemispherical part.


Statement A (Assertion): Total Surface area of the top is the sum of the curved surface area of the hemisphere and the curved surface area of the cone.

Statement R( Reason): Top is obtained by joining the plane surfaces of the hemisphere and cone together.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×