Advertisements
Advertisements
प्रश्न
Solve the following equation by using formula :
10ax2 – 6x + 15ax – 9 = 0,a≠0
उत्तर
10ax2 – 6x + 15ax – 9 = 0
Here a = 10a, b = –(6 - 15a), c = –9
D = b2 – 4ac
= [–(6 – 15a)]2 – 4 x 10a(–9)
= 36 – 180a + 225a2 + 360a
= 36 + 180a + 225a2 = (6 + 15a)2
∴ x = `(-b ± sqrt("D"))/(2a)`
= `(-[-(6 - 15a)] ± sqrt((6 + 15a)^2))/(2 xx 10a)`
= `((6 - 15a) ± (6 + 15a))/(20a)`
∴ x1 = `(6 - 15a + 6 + 15a)/(20a)`
= `(12)/(20a)`
= `(3)/(5a)`
x2 = `(6 - 15a - 6 - 15a)/(20a)`
= `(-30a)/(20a)`
= `(-3)/(2)`
Hence x = `(3)/5a), (-3)/(2)`.
APPEARS IN
संबंधित प्रश्न
In the following, determine whether the given values are solutions of the given equation or not:
x2 + x + 1 = 0, x = 0, x = 1
Solve:
`(x^2 + 1/x^2) - 3(x - 1/x) - 2 = 0`
`(x-1)/(x-2)+(x-3)/(x-4)=3 1/3,x≠2,4`
Find the value of p for which the roots of the equation px (x − 2) + 6 = 0, are equal.
Write the following equation in the form ax2 + bx + c = 0, then write the values of a, b, c for the equation.
2y = 10 – y2
The speed of the boat in still water is 11 km/ hr. It can go 21 km upstream and 12 km downstream in 3 hours. Find the speed of the stream.
Find which of the following equations are quadratic:
5x2 – 8x = –3(7 – 2x)
Solve:
(x2 – 3x)2 – 16(x2 – 3x) – 36 = 0
Solve `9("x"^2 + 1/"x"^2) -3("x" - 1/"x") - 20 = 0`
Solve the following equation by using formula :
256x2 – 32x + 1 = 0