Advertisements
Advertisements
Question
Solve the following equation by using formula :
10ax2 – 6x + 15ax – 9 = 0,a≠0
Solution
10ax2 – 6x + 15ax – 9 = 0
Here a = 10a, b = –(6 - 15a), c = –9
D = b2 – 4ac
= [–(6 – 15a)]2 – 4 x 10a(–9)
= 36 – 180a + 225a2 + 360a
= 36 + 180a + 225a2 = (6 + 15a)2
∴ x = `(-b ± sqrt("D"))/(2a)`
= `(-[-(6 - 15a)] ± sqrt((6 + 15a)^2))/(2 xx 10a)`
= `((6 - 15a) ± (6 + 15a))/(20a)`
∴ x1 = `(6 - 15a + 6 + 15a)/(20a)`
= `(12)/(20a)`
= `(3)/(5a)`
x2 = `(6 - 15a - 6 - 15a)/(20a)`
= `(-30a)/(20a)`
= `(-3)/(2)`
Hence x = `(3)/5a), (-3)/(2)`.
APPEARS IN
RELATED QUESTIONS
Check whether the following is the quadratic equation:
(x – 3)(2x + 1) = x(x + 5)
Check whether the following is the quadratic equation:
(2x - 1)(x - 3) = (x + 5)(x - 1)
In the following, find the value of k for which the given value is a solution of the given equation:
`kx^2+sqrt2x-4=0`, `x=sqrt2`
`x^2+6x+5=0`
`x^2+12x+35=0`
`x^2=18x-77`
`x^2-4ax-b^2+4a^2=0`
`4x^2-2(a^2+b^2)x+a^2b^2=0`
Solve the following equation by using formula :
`(x - 2)/(x + 2) + (x + 2)/(x - 2)` = 4
Choose the correct answer from the given four options :
Which of the following is not a quadratic equation?