हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा १२

Solve the following Linear differential equation: dd(1+x+xy2)dydx+(y+y3) = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following Linear differential equation:

`(1 + x + xy^2) ("d"y)/("d"x) + (y + y^3)` = 0

योग

उत्तर

`(1 + x + xy^2) ("d"y)/("d"x) = - (y + y^3)`

`(1 + x + xy^2) = - y(y^2 + 1) ("d"x)/("d"y)`

`y(y^2 + 1) ("d"x)/("d"y) + 1 + x(y^2 + 1)` = 0

Divided by `y(y^2 + 1)`,

`("d"x)/("d"y) + 1/(y(y^2 + 1)) + (x(y^2 + 1))/(y(y^2 + 1))` = 0

`("d"x)/("d"y) + x/y = - 1/(y(y^2 + 1))`

This is the form of `("d"x)/("d"y) + "P"x` = Q

Where P = `1/y` and Q = `(-1)/(y(1 + y^2))`

I.F = `"e"^(int "Pd"y)`

= `"e"^(int 1/y "d"y)`

= `"e"^(log y)`

= y

So, the solution of the equation is given by

`x xx "I.F" = int ("Q" xx "I.F")  "d"y + "c"`

`x xx y = int (-1)/(y(1 + y^2)) xx y xx "d"y + "c"`

xy = `int (-1)/(1 + y^2)  "d"y + "c"`

= `- int 1/(1 + y^2)  "d"y + "c"`

xy = `- tan^-1 "y" + "c"`

xy + `tan^-1 "y" + "c"`

Which is the required solution.

shaalaa.com
First Order Linear Differential Equations
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Ordinary Differential Equations - Exercise 10.7 [पृष्ठ १६९]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
अध्याय 10 Ordinary Differential Equations
Exercise 10.7 | Q 9 | पृष्ठ १६९
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×