हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा १२

Solve the following Linear differential equation: edd(y-esin-1x)dxdy+1-x2 = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following Linear differential equation:

`(y - "e"^(sin^-1)x) ("d"x)/("d"y) + sqrt(1 - x^2)` = 0

योग

उत्तर

`(y - "e"^(sin^-1x)) ("d"x)/("d"y) + sqrt(1 - x^2)` = 0

`(y - "e"^(sin^-1x)) ("d"x)/("d"y) = - sqrt(1 - x^2)`

`(y - "e"^(sin^-1x)) = - sqrt(1 - x^2)  ("d"y)/("d"x)`

`sqrt(1 - x^2) ("d"y)/("d"x) + y = "e"^(sin^-1)x`

÷ By `sqrt(1 - x^2) ("d"y)/("d"x) + 1/sqrt(1 - x^2) y = ("e"^(sin^-1)x)/sqrt(1 - x^2)`

Thus, the given differential equation is Linear

P = `1/sqrt(1 - x^2)`

Q = `("e"^(sin^-1)x)/sqrt(1 - x^2)`

I.F = `"e"^(int "Pd"x)`

= `"e" ^(int 1/sqrt(1 - x^2) "d"x)`

= `"e"^(sin^-1x)`

So, the required solution is

`y xx "I.F" = int "Q" xx "I.F"  "d"x + "c"`

`y  "e"^(sin^-1x) = int ("e"^(sin^-1x))/sqrt(1 - x^2) + "e"^(sin^-1x)  "d"x + "c"`

t = `sin^-1x`

dt = `1/sqrt(1 - x^2)  "d"x`

`y  "e"^(sin^-1x) = int "e"^"t" * "e"^"t"  "dt" + "c"`

= `int "e"^(2"t")  "dt" + "c"`

`y  "e"^(sin^-1x) = "e"^(2"t")/2 + "c"`

∴ `y  "e"^(sin^-1x) = ("e"^(2 sin^-1x))/2 + "c"`

shaalaa.com
First Order Linear Differential Equations
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Ordinary Differential Equations - Exercise 10.7 [पृष्ठ १६९]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
अध्याय 10 Ordinary Differential Equations
Exercise 10.7 | Q 7 | पृष्ठ १६९
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×