हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा १२

Solve the following Linear differential equation: dddydx+3yx=1x2, given that y = 2 when x = 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following Linear differential equation:

`("d"y)/("d"x) + (3y)/x = 1/x^2`, given that y = 2 when x = 1

योग

उत्तर

The given differential equation can be written as

`("d"y)/("d"x) + (3y)/x = 1/x^2`

This is of the form `("d"y)/("d"x) + "P"y` = Q

Where P = `3/x`

Q = `1/x^2`

Thus, the given differential equation is linear.

I.F = `"e"^(int "Pd"x)`

= `"e"^(int 3/4 "d"x)`

= `"e"^(3logx)`

= `"e"^(logx3)`

= x3 

So, its solution is given by

y × I.F = `("Q" xx "I.F")  "d"x + "c"`

yx3 = `int 1/x^2 + x^3  "d"x + "c"`

= `int x  "d"x + "c"`

yx3 = `x^2/2 + "c"`

2yx3 = x2 + c

Given that y = 2 when x = 1

2 (2) (1)3 = 1 + c

4 – 1 = c

c = 3

∴ 2yx3 = x2 + 3 is a required solution.

shaalaa.com
First Order Linear Differential Equations
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Ordinary Differential Equations - Exercise 10.7 [पृष्ठ १६९]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
अध्याय 10 Ordinary Differential Equations
Exercise 10.7 | Q 15 | पृष्ठ १६९
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×