Advertisements
Advertisements
प्रश्न
Solve the following problem :
Find the Quantity Index Number using Simple Aggregate Method.
Commodity | Base year quantity | Current year quantity |
A | 100 | 130 |
B | 170 | 200 |
C | 210 | 250 |
D | 90 | 110 |
E | 50 | 150 |
उत्तर
Commodity | Base Year Quantity q0 |
Current Year Quantity q1 |
A | 100 | 130 |
B | 170 | 200 |
C | 210 | 250 |
D | 90 | 110 |
E | 50 | 150 |
Total | 620 | 840 |
From the table, `sum"q"_0 = 620, sum"q"_1 = 840`
Quantity Index Number (Q01) = `(sum"q"_1)/(sum"q"_0) xx 100`
= `(840)/(620) xx 100`
= 135.48
APPEARS IN
संबंधित प्रश्न
Fill in the blank :
Value Index Number by Weighted Aggregate Method is given by _______.
`sum ("p"_0"q"_0)/("p"_1"q"_1) xx 100` is Value Index Number by Simple Aggregate Method.
Choose the correct alternative:
`(sum"p"_1"q"_1"w")/(sum"p"_0"q"_0"w") xx 100` gives
Quantity Index Number by Weighted Aggregate Method is given by ______.
Price Index Number by Weighted Aggregate Method is given by ______
State whether the following statement is True or False:
`sum("q"_1)/("q"_0) xx 100` is the Quantity Index Number by Simple Aggregate Method
Find Price Index Number using Simple Aggregate method by taking 2005 as base year.
Commodity | P | Q | R | S | T |
Price in 2005 (in ₹) | 10 | 25 | 14 | 20 | 30 |
Price in 2015 (in ₹) | 32 | 40 | 20 | 45 | 70 |
Find Quantity Index Number using Simple Aggregate method
Commodity | A | B | C | D | E |
Base year Quantity | 170 | 150 | 100 | 195 | 205 |
Current year Quantity | 90 | 70 | 75 | 150 | 95 |
Calculate Value Index Number for the following using Simple Aggregate Method
Commodity | Base Year | Current Year | ||
Price | Quantity | Price | Quantity | |
A | 30 | 13 | 40 | 15 |
B | 40 | 15 | 70 | 20 |
C | 10 | 12 | 60 | 22 |
D | 50 | 10 | 90 | 18 |
E | 20 | 14 | 100 | 16 |
Find x if the Price Index Number by Simple Aggregate Method is 125
Commodity | P | Q | R | S | T |
Base Year Price (in ₹) | 10 | 8 | 12 | 24 | 18 |
Current Year Price (in ₹) | 14 | 10 | x | 28 | 22 |
Find values x and y if the Price Index Number by Simple Aggregate Method by taking 2001 as base year is 120, given `sum"p"_1` = 300.
Commodity | A | B | C | D |
Price (in ₹) in 2001 | 90 | x | 90 | 30 |
Price (in ₹) in 2004 | 95 | 60 | y | 35 |
Choose the correct pair:
Group A | Group B |
A. Price Index | (a) `(sump_1q_1)/(sump_0q_0) xx 100` |
B. Value Index | (b) `(sumq_1)/(sumq_0) xx 100` |
C. Quantity Index | (c) `(sump_1q_1)/(sump_0q_1) xx 100` |
D. Paasche's Index | (d) `(sump_1)/(sump_0) xx 100` |
Choose the correct pair:
Group A | Group B |
1) Price Index | a) `(sump_1q_1)/(sump_0 q_0) × 100` |
2) Value Index | b) `(sumq_1)/(sumq_0) × 100` |
3) Quantity Index | c) `(sump_1q_1)/(sump_0 q_1) × 100` |
4) Paasche's Index | d) `(sump_1)/(sump_0) × 100` |
State with reason whether you agree or disagree with the following statement:
The quantity index number is one type of index number.
Give an economic term:
An index number measuring the general changes in the prices of goods over a period of time.
Identify and explain the concept from the given illustration:
Pooja collected information regarding a change in the quantity of imports of India from 2019 to 2020 and prepared an index number.
Observe the following table and answer the questions given below it:
Commodities | Prices in 2006 (in ₹) (Base Year) P0 | Prices in 2006 (in ₹) (Current Year) P1 |
A | 20 | 30 |
B | 30 | 45 |
C | 40 | 60 |
D | 50 | 75 |
E | 60 | 90 |
Questions:
- Write the formula for calculation of price index.
- Find the value of ∑P0 and ∑P1.
- Find the price index P01.
Choose the correct pair :
Group A | Group B | ||
1) | Price Index | a) | `(sump_1q_1)/(sump_0q_0) xx 100` |
2) | Value Index | b) | `(sumq_1)/(sumq_0) xx 100` |
3) | Quantity Index | c) | `(sump_1q_1)/(sump_0q_1) xx 100` |
4) | Paasche's Index | d) | `(sump_1)/(sump_0) xx 100` |