हिंदी

Solve the Pair of Linear (Simultaneous) Equation by the Method of Elimination by Substitution: 6x = 7y + 7 7y - X = 8 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the pair of linear (simultaneous) equation by the method of elimination by substitution:
6x = 7y + 7
7y - x = 8

योग

उत्तर

6x = 7y + 7                                  ...(1)
7y - x = 8                                     ...(2)

7y - x = 8
∴ x = 7y - 8

Putting this value of x in (1)
6( 7y - 8 ) = 7y + 7
∴ 42y - 48 = 7y + 7
∴ 35y = 55
∴ y = `11/7`

From (2) 
`x = 7(11/7) - 8`
x = 3

∴ x = 3, y = `11/7`.

shaalaa.com
Methods of Solving Simultaneous Linear Equations by Elimination Method
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Simultaneous (Linear) Equations (Including Problems) - Exercise 6 (A) [पृष्ठ ७९]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
अध्याय 6 Simultaneous (Linear) Equations (Including Problems)
Exercise 6 (A) | Q 5 | पृष्ठ ७९

संबंधित प्रश्न

Solve the pair of linear (simultaneous) equation by the method of elimination by substitution :
8x + 5y = 9
3x + 2y = 4


Solve the pair of linear (simultaneous) equation by the method of elimination by substitution :
2x - 3y = 7
5x + y= 9


Solve the pair of linear (simultaneous) equation by the method of elimination by substitution :
y = 4x - 7
16x - 5y = 25


Solve the pair of linear (simultaneous) equation by the method of elimination by substitution:
2x + 7y = 39
3x + 5y = 31


Solve th following pair of linear (Simultaneous ) equation using method of elimination by substitution :
`[ 2x + 1]/7 + [5y - 3]/3 = 12`

`[3x + 2 ]/2 - [4y + 3]/9 = 13`   


Solve the following simultaneous equations by the substitution method:
2x + 3y = 31
5x - 4 = 3y


Solve the following simultaneous equations by the substitution method:
7x - 3y = 31
9x - 5y = 41


Solve the following simultaneous equations by the substitution method:
13 + 2y = 9x
3y = 7x


Solve the following simultaneous equations by the substitution method:
0.4x + 0.3y = 1.7
0.7x - 0.2y = 0.8


Solve the following simultaneous equations by the substitution method:
3 - (x + 5) = y + 2
2(x + y) = 10 + 2y


Solve the following pairs of equations:

`(6)/(x + y) = (7)/(x - y) + 3`

`(1)/(2(x + y)) = (1)/(3( x - y)`
Where x + y ≠ 0 and x - y ≠ 0


The age of the father is seven times the age of the son. Ten years later, the age of the father will be thrice the age of the son. Find their present ages.


In a ABC, ∠A = x°, ∠B = (2x - 30)°, ∠C = y° and also, ∠A + ∠B = one right angle. Find the angles. Also, state the type of this triangle.


A two-digit number is such that the ten's digit exceeds thrice the unit's digit by 3 and the number obtained by interchanging the digits is 2 more than twice the sum of the digits. Find the number.


Samidha and Shreya have pocket money Rs.x and Rs.y respectively at the beginning of a week. They both spend money throughout the week. At the end of the week, Samidha spends Rs.500 and is left with as much money as Shreya had in the beginning of the week. Shreya spends Rs.500 and is left with `(3)/(5)` of what Samidha had in the beginning of the week. Find their pocket money.


Solve by the method of elimination

2x – y = 3, 3x + y = 7


Solve by the method of elimination

x – y = 5, 3x + 2y = 25


Solve by the method of elimination

`4/x + 5y` = 7, `3/x + 4y` = 5


Solve by the method of elimination

13x + 11y = 70, 11x + 13y = 74


Five years ago, a man was seven times as old as his son, while five year hence, the man will be four times as old as his son. Find their present age


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×