हिंदी

Test the continuity of the following function at the points indicated against them: f(x) = 4x + 1, for x ≤ 3 = 59-9x3, for x > 3 at x = 83. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Test the continuity of the following function at the points indicated against them:

f(x) = 4x + 1,              for x ≤ 3

      = `(59 - 9x)/3`,        for x > 3 at x = `8/3`.

योग

उत्तर

`lim_(x→(8/3)^-) "f"(x) = lim_(x→(8/3)^-) (4x + 1)`

= `4(8/3) + 1`

= `32/3 + 1`

= `35/3`

`lim_(x→(8/3)^+) "f"(x) = lim_(x→(8/3)^+) (59 - 9x)/3`

= `(59 - 9(8/3))/3`

= `(59 - 24)/3`

= `35/3`

f(x) = 4x + 1,      x ≤ `(8/3)`

∴ `"f"(8/3) = 4(8/3) + 1`

= `32/3 + 1`

= `35/3`

`lim_(x→(8/3)^-) "f"(x) = lim_(x→(8/3)^+) "f"(x) = "f"(8/3)`

∴ f(x) is continuous at x = `8/3`

shaalaa.com
Properties of Continuous Functions
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Continuity - Exercise 8.1 [पृष्ठ ११२]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 11 Standard Maharashtra State Board
अध्याय 8 Continuity
Exercise 8.1 | Q 3. (iii) | पृष्ठ ११२

संबंधित प्रश्न

Test the continuity of the following function at the points indicated against them:

`f(x) = (sqrt(x - 1) - (x - 1)^(1/3))/(x - 2)`  for x ≠ 2

         = `1/5`                                  for x = 2, at x = 2


Test the continuity of the following function at the points indicated against them:

`"f"(x) = (x^3 - 8)/(sqrt(x + 2) - sqrt(3x - 2))`  for x ≠ 2
         = – 24                               for x = 2, at x = 2


Test the continuity of the following function at the points indicated against them:

f(x) = `(x^3 - 27)/(x^2 - 9)`  for 0 ≤ x <3

      = `9/2`             for 3 ≤ x ≤ 6, at x = 3


Discuss the continuity of the following function at the point(s) or in the interval indicated against them:

f(x) = 2x2 − 2x + 5  for 0 ≤ x < 2

= `(1 - 3x - x^2)/(1 - x)`     for 2 ≤ x < 4

= `(7 - x^2)/(x - 5)`  for 4 ≤ x ≤ 7 on its domain.


Discuss the continuity of the following function at the point(s) or in the interval indicated against them:

`f(x) = (5^x - e^x)/(2x)`  for x ≠ 0

= `1/2`(log5−1)         for x = 0 at x = 0


`f(x) = (log x - log 3)/(x - 3)` for x ≠ 3

= 3                                for x = 3, at x = 3.


Find a and b if the following function is continuous at the point indicated against them.

`f(x) = (x^2 - 9)/(x - 3) + "a"`         , for x > 3
        = 5                             , x = 3
        = 2x2 + 3x + b          , for x < 3
is continuous at x = 3


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×