हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएसएसएलसी (अंग्रेजी माध्यम) कक्षा ९

The centre of a circle is (−4, 2). If one end of the diameter of the circle is (−3, 7) then find the other end - Mathematics

Advertisements
Advertisements

प्रश्न

The centre of a circle is (−4, 2). If one end of the diameter of the circle is (−3, 7) then find the other end

योग

उत्तर


Let the other end of the diameter B be (a, b)

Mid−point of a line = `((x_1 + x_2)/2, (y_1 + y_2)/2)(-3, 7)`

(−4, 2) = `((-3 + "a")/2, (7 + "b")/2)`

∴ `(-3 + "a")/2` = − 4

−3 + a = − 8

a = – 8 + 3

a = −5

`(7 + "b")/2`

7 + b = 4

b = 4 – 7

⇒ b = – 3

The other end of the diameter is (– 5, – 3).

shaalaa.com
The Mid-point of a Line Segment (Mid-point Formula)
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Coordinate Geometry - Exercise 5.3 [पृष्ठ २०८]

APPEARS IN

सामाचीर कलवी Mathematics [English] Class 9 TN Board
अध्याय 5 Coordinate Geometry
Exercise 5.3 | Q 2 | पृष्ठ २०८

संबंधित प्रश्न

ABCD is a parallelogram where A(x, y), B(5, 8), C(4, 7) and D(2, -4). Find

1) Coordinates of A

2) An equation of diagonal BD


One end of the diameter of a circle is (–2, 5). Find the co-ordinates of the other end of it, if the centre of the circle is (2, –1).


Find th co-ordinates of the midpoint of the line segment joining P(0, 6) and Q(12, 20).


Find the midpoint of the line segment joining the following pair of point : 

(a+b, b-a) and (a-b, a+b) 


If the midpoints of the sides ofa triangle are (-2, 3), (4, -3), (4, 5), find its vertices. 


P , Q and R are collinear points such that PQ = QR . IF the coordinates of P , Q and R are (-5 , x) , (y , 7) , (1 , -3) respectively, find the values of x and y.


A(−3, 2), B(3, 2) and C(−3, −2) are the vertices of the right triangle, right angled at A. Show that the mid-point of the hypotenuse is equidistant from the vertices


If the coordinates of one end of a diameter of a circle is (3, 4) and the coordinates of its centre is (−3, 2), then the coordinate of the other end of the diameter is


Point P is the centre of the circle and AB is a diameter. Find the coordinates of points B if coordinates of point A and P are (2, – 3) and (– 2, 0) respectively.


Given: A`square` and P`square`. Let B (x, y)

The centre of the circle is the midpoint of the diameter.

∴ Mid point formula,

`square = (square + x)/square`

⇒ `square = square` + x

⇒ x = `square - square`

⇒ x = – 6

and `square = (square + y)/2`

⇒ `square` + y = 0

⇒ y = 3

Hence coordinates of B is (– 6, 3).


ABC is a triangle whose vertices are A(1, –1), B(0, 4) and C(– 6, 4). D is the midpoint of BC. Find the coordinates of D.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×