Advertisements
Advertisements
प्रश्न
The complex numbers u v, , and w are related by `1/u = 1/v + 1/w`. If v = 3 – 4i and w = 4 + 3i, find u in rectangular form
उत्तर
v = 3 – 4i
w = 4 + 3i
Given Relation `1/u = 1/v + 1/w`
`1/u = 1/(3 - 4"i") + 1/(4 + 3"i")`
= `(1/(3 - 4"i") xx (3 + 4"i")/(3 + 4"i")) + (1/(4 + 3"i") xx (4 - 3"i")/(4 - 3"i"))`
= `(3 + 4"i")/((3)^2 - (4"i")^2) + (4 - 3"i")/((4)^2 - (3"i")^2`
= `(3 + 4"i")/(9 + 16) + (4 - 3"i")/(16 + 9)`
= `(3 + 4"i" + 4 - 3"i")/25`
= `(7 + "i")/25`
u = `25/(7 + "i") xx (7 - "i")/(7 - "i")`
= `(25(7 - "i"))/((7)^2 - "i"^2)`
= `(25(7 - "i"))/(49 + 1)`
= `25/50 (7 - "i")`
= `1/2 (7 - "i")`
= `7/2 - "i"/2`
APPEARS IN
संबंधित प्रश्न
Write the following in the rectangular form:
`bar((5 + 9"i") + (2 - 4"i"))`
Write the following in the rectangular form:
`(10 - 5"i")/(6 + 2"i")`
Write the following in the rectangular form:
`bar(3"i") + 1/(2 - "i")`
If z = x + iy, find the following in rectangular form:
`"Re"(1/z)`
If z = x + iy, find the following in rectangular form:
`"Re"("i"barz)`
If z = x + iy, find the following in rectangular form:
`"Im"(3z + 4bar(z) - 4"i")`
If z1 = 2 – i and z2 = – 4 + 3i, find the inverse of z1, z2 and `("z"_1)/("z"_2)`
Prove the following properties:
z is real if and only if z = `bar(z)`
Prove the following properties:
Re(z) = `(z + bar(z))/2` and Im(z) = `(z - bar(z))/(2"i")`
Find the least value of the positive integer n for which `(sqrt(3) + "i")^"n"` purely imaginary
Show that `(2 + "i"sqrt(3))^10 - (2 - "i" sqrt(3))^10` is purely imaginary
Show that `((19 - 7"i")/(9 + "i"))^12 + ((20 - 5"i")/(7 - 6"i"))^12` is real
Choose the correct alternative:
The conjugate of a complex number is `1/(" - 2)`. Then, the complex number is