Advertisements
Advertisements
प्रश्न
The cross-section of a tunnel perpendicular to its length is a trapezium ABCD as shown in the following figure; also given that:
AM = BN; AB = 7 m; CD = 5 m. The height of the tunnel is 2.4 m. The tunnel is 40 m long. Calculate:
(i) The cost of painting the internal surface of the tunnel (excluding the floor) at the rate of Rs. 5 per m2 (sq. meter).
(ii) The cost of paving the floor at the rate of Rs. 18 per m2.
उत्तर
The cross-section of a tunnel is of the trapezium-shaped ABCD in which AB = 7 m, CD = 5 m and AM = BN. The height is 2.4 m and its length is 40 m.
(i) AM = BN =`( 7 - 5 )/( 2 )= ( 2 )/( 2 ) =1"m"`
∴ In ΔADM,
AD2 = AM2 + DM2 ...[ Using Pythagoras theorem ]
= 12 + (2 . 4)2
= 1 + 5.76
= `sqrt6.76`
= 2.6
AD = 2.6 m
Perimeter of the cross-section of the tunnel = ( 7 + 2.6 + 2.6 + 5 ) m = 17.2 m
Length = 40 m
∴ The internal surface area of the tunnel ( except the floor )
= ( 17.2 × 40 - 40 × 7) m2
= ( 688 - 280 ) m2
= 408 m2
Rate of painting = Rs. 5 per m2
Hence, total cost of painting = Rs. 5 × 408 = Rs. 2040
(ii) Area of floor of tunnel = l × b = 40 × 7 = 280 m2
Rate of cost of paving = Rs. 18 per m2
Total cost = 280 × 18 = Rs. 5040
APPEARS IN
संबंधित प्रश्न
The following figure shows a solid of uniform cross-section. Find the volume of the solid. All measurements are in centimeters.
Assume that all angles in the figures are right angles.
A rectangular cardboard sheet has length 32 cm and breadth 26 cm. Squares each of side 3 cm, are cut from the corners of the sheet and the sides are folded to make a rectangular container. Find the capacity of the container formed.
The cross-section of a piece of metal 4 m in length is shown below. Calculate :
(i) The area of the cross-section;
(ii) The volume of the piece of metal in cubic centimeters.
If 1 cubic centimeter of the metal weighs 6.6 g, calculate the weight of the piece of metal to the nearest kg.
A rectangular field is 112 m long and 62 m broad. A cubical tank of edge 6 m is dug at each of the four corners of the field and the earth so removed is evenly spread on the remaining field. Find the rise in level.
The cross section of a piece of metal 2 m in length is shown. Calculate the area of cross section.
The figure shows the cross section of 0.2 m a concrete wall to be constructed. It is 0.2 m wide at the top, 2.0 m wide at the bottom and its height is 4.0 m, and its length is 40 m. If the whole wall is to be painted, find the cost of painting it at 2.50 per sq m.
The cross section of a tunnel perpendicular to its length is a trapezium ABCD as shown in the figure. AM = BN; AB = 4.4 m, CD = 3 m The height of a tunnel is 2.4 m. The tunnel is 5.4 m long. Calculate the cost of flooring at the rate of Rs.2. 5 per m2.
ABCDE is the end view of a factory shed which is 50 m long. The roofing of the shed consists of asbestos sheets as shown in the figure. The two ends of the shed are completely closed by brick walls.
Calculate the total volume content of the shed.
ABCDE is the end view of a factory shed which is 50 m long. The roofing of the shed consists of asbestos sheets as shown in the figure. The two ends of the shed are completely closed by brick walls.
If the cost of asbestos sheet roofing is Rs. 20 per m2, find the cost of roofing.
The cross section of a swimming pool is a trapezium whose shallow and deep ends are 1 m and 3 m respectively. If the length of the pool is 50 m and its width is 1.5 m, calculate the volume of water it holds.