Advertisements
Advertisements
प्रश्न
The decay constant λ of a certain radioactive material is 0.2166 per day. The average life τ of the radioactive material is ______
विकल्प
5.332 days
4.617 days
2.166 days
1.083 days
उत्तर
The decay constant λ of a certain radioactive material is 0.2166 per day. The average life τ of the radioactive material is 4.617 days.
APPEARS IN
संबंधित प्रश्न
Sample of carbon obtained from any living organism has a decay rate of 15.3 decays per gram per minute. A sample of carbon obtained from very old charcoal shows a disintegration rate of 12.3 disintegrations per gram per minute. Determine the age of the old sample given the decay constant of carbon to be 3.839 × 10−12per second.
Complete the following equation describing nuclear decay.
\[\ce{_88^226Ra->_2^4\alpha {+}}\] ______.
Complete the following equation describing nuclear decay.
\[\ce{_90^228Th->\alpha { +}}\] _____
Complete the following equation describing nuclear decay.
\[\ce{_7^12N -> _6^12C {+}}\] ______
Write relation between decay constant of a radioelement and its half-life.
0.5 g sample of 201Tl decays to 0.0788 g in 8 days. What is its half-life?
65% of 111In sample decays in 4.2 d. What is its half-life?
A 3/4 of the original amount of radioisotope decays in 60 minutes. What is its half-life?
A sample of old wood shows 7.0 dps/g. If the fresh sample of tree shows 16.0 dps/g, how old is the given sample of wood? (Half-life of 14C is 5730 y)
The half-life of a certain radioactive nucleus is 3.2 days. Calculate (i) decay constant (ii) average life of radioactive nucleus.
Obtain an expression for the half-lifetime of radioactive material. Hence state the relation between an average life and half lifetime of radioactive material.
A radioactive substance decays to (1/10)th of its original value in 56 days. Calculate its decay constant.
A radioactive substance of half-life 69.3 days is kept in a container. The time in which 80% of the substance will disintegrate will be ______
[take ln(5) = 1.61]
Most excited states of an atom have life times of about ____________.
The radioactivity of a sample is R1 at a time T1 and R2 at a time T2. If the half-life of the specimen is T, the number of atoms that have disintegrated in the time (T1 - T2) is proportional to ______.
A radioactive element has rate of disintegration 10,000 disintegrations per minute at a particular instant. After four minutes it become 2500 disintegrations per minute. The decay constant per minute is ______.
The activity of a radioactive substance decreases by a factor of 32 in one hour. The half-life of the substance (in min) is ______.
The half-life of a radioactive substance is 10 days. The time taken for the `(7/8)^"th"` of the sample of disintegrates is ______.
The graph obtained by plotting loge (A) [A is the activity of a radioactive sample] against t (time) out of the following is:
The disintegration rate of a radio-active sample is 1010 per hour at 20 hours from the start. It reduces to 5 × 109 per hour after 30 hours. Calculate the decay constant.
Show that the number of nuclei of a radioactive material decreases exponentially with time.
The half-life of \[\ce{^238_92U}\] undergoing ∝- -decay is 4.5 × 109 years. What is the activity of 1g sample of \[\ce{^238_92U}\]?
Define half life period.
In one mean lifetime of a radioactive element the fraction of the nuclei that has disintegrated is ______. [e is the base of natural logarithm]