Advertisements
Advertisements
Question
The decay constant λ of a certain radioactive material is 0.2166 per day. The average life τ of the radioactive material is ______
Options
5.332 days
4.617 days
2.166 days
1.083 days
Solution
The decay constant λ of a certain radioactive material is 0.2166 per day. The average life τ of the radioactive material is 4.617 days.
APPEARS IN
RELATED QUESTIONS
What is gamma decay?
Sample of carbon obtained from any living organism has a decay rate of 15.3 decays per gram per minute. A sample of carbon obtained from very old charcoal shows a disintegration rate of 12.3 disintegrations per gram per minute. Determine the age of the old sample given the decay constant of carbon to be 3.839 × 10−12per second.
Describe alpha, beta and gamma decays and write down the formulae for the energies generated in each of these decays.
Complete the following equation describing nuclear decay.
\[\ce{_88^226Ra->_2^4\alpha {+}}\] ______.
Complete the following equation describing nuclear decay.
\[\ce{_8^19O->e^- { +}}\] _____
Complete the following equation describing nuclear decay.
\[\ce{_90^228Th->\alpha { +}}\] _____
Derive the relationship between half-life and decay constant of a radioelement.
The half-life of 67Ga is 78 h. How long will it take to decay 12% of the sample of Ga?
0.5 g sample of 201Tl decays to 0.0788 g in 8 days. What is its half-life?
A sample of old wood shows 7.0 dps/g. If the fresh sample of tree shows 16.0 dps/g, how old is the given sample of wood? (Half-life of 14C is 5730 y)
In Hydrogen, the electron jumps from the fourth orbit to the second orbit. The wavenumber of the radiations emitted by an electron is ______
The half-life of a certain radioactive species is 6.93 × 105 seconds. What is the decay constant?
Show that half life period of radioactive material varies inversely to decay constant λ.
Show that for radioactive decay N(t) = `"N"_"O" "e"^{-λ"t"}`, where symbols have their usual meaning.
Obtain an expression for the half-lifetime of radioactive material. Hence state the relation between an average life and half lifetime of radioactive material.
A radioactive substance decays to (1/10)th of its original value in 56 days. Calculate its decay constant.
A radioactive substance of half-life 69.3 days is kept in a container. The time in which 80% of the substance will disintegrate will be ______
[take ln(5) = 1.61]
A radioactive substance has half life of 3 hours. 75 % of the substance would decay in ____________.
The radioactivity of a sample is R1 at a time T1 and R2 at a time T2. If the half-life of the specimen is T, the number of atoms that have disintegrated in the time (T1 - T2) is proportional to ______.
A radioactive element has rate of disintegration 10,000 disintegrations per minute at a particular instant. After four minutes it become 2500 disintegrations per minute. The decay constant per minute is ______.
The activity of a radioactive substance decreases by a factor of 32 in one hour. The half-life of the substance (in min) is ______.
A radioactive sample S1 having the activity A1 has twice the number of nuclei as another sample S2 of activity A2 If A2 = 2A1 then the ratio of half-life of S1 to the half-life of S2 is ______.
The half-life of a radioactive substance is 10 days. The time taken for the `(7/8)^"th"` of the sample of disintegrates is ______.
If the number of nuclei of a radioactive substance becomes `1/e` times the initial number in 10 days, what is the decay constant of the substance?
The half-life of \[\ce{^238_92U}\] undergoing ∝- -decay is 4.5 × 109 years. What is the activity of 1g sample of \[\ce{^238_92U}\]?
Define half life period.