Advertisements
Advertisements
प्रश्न
The demand function p = 85 – 5x and supply function p = 3x – 35. Calculate the equilibrium price and quantity demanded. Also, calculate consumer’s surplus
उत्तर
Demand function p = 85 – 5x
Supply function p = 3x – 35
W.K.T. at equilibrium prices pd = ps
85 – 5x = 3x – 35
85 + 35 = 3x + 5x
120 = 8x
⇒ x = `120/8`
∴ x = 15
When x = 15
p0 = 85 – 5(15)
= 85 – 75
= 10
C.S = `int_0^x` f(x) dx – x0p0
= `int_0^x` (85 – 5x) dx – (15)(10)
= `[5x - 5(x^2/2)]_0^15 - 150`
= `{85(15) - 5((15)^2/2) - [0]} - 150`
= `[1275 - (5(225))/2] - 150`
= `1275 - 1125/2 - 150`
= 1275 – 562.50 – 150
= 1275 – 712.50
∴ C.S = 562.50 units
APPEARS IN
संबंधित प्रश्न
Elasticity of a function `("E"y)/("E"x)` is given by `("E"y)/("E"x) = (-7x)/((1 - 2x)(2 + 3x))`. Find the function when x = 2, y = `3/8`
Given the marginal revenue function `4/(2x + 3)^2 - 1` show that the average revenue function is P = `4/(6x + 9) - 1`
A firm’s marginal revenue function is MR = `20"e"^((-x)/10) (1 - x/10)`. Find the corresponding demand function
If MR = 14 – 6x + 9x2, Find the demand function
Calculate consumer’s surplus if the demand function p = 50 – 2x and x = 20
If the supply function for a product is p = 3x + 5x2. Find the producer’s surplus when x = 4
Under perfect competition for a commodity the demand and supply laws are Pd = `8/(x + 1) - 2` and Ps = `(x + 3)/2` respectively. Find the consumer’s and producer’s surplus
Choose the correct alternative:
If the marginal revenue function of a firm is MR = `"e"^((-x)/10)`, then revenue is
Choose the correct alternative:
The profit of a function p(x) is maximum when
A company requires f(x) number of hours to produce 500 units. It is represented by f(x) = 1800x–0.4. Find out the number of hours required to produce additional 400 units. [(900)0.6 = 59.22, (500)0.6 = 41.63]