हिंदी

The figure below are two long, parallel wires carrying current in the same direction such that I1 < I2. (i) In which direction will wire I1 move? - Physics (Theory)

Advertisements
Advertisements

प्रश्न

The figure below are two long, parallel wires carrying current in the same direction such that I1 < I2.

  1. In which direction will wire I1 move?
  2. If the direction of the current I2 is reversed, in which direction will the wire I1 move now?
संक्षेप में उत्तर

उत्तर

  1. It will move towards I1. (Two linear parallel conductors carrying currents in the same direction attract each other.)
  2. It will move away from I1. (Two linear parallel conductors carrying currents in the opposite direction repel each other.)
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2024-2025 (April) Specimen Paper

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

How does one understand this motional emf by invoking the Lorentz force acting on the free charge carriers of the conductor? Explain.


Two long and parallel straight wires A and B carrying currents of 8.0 A and 5.0 A in the same direction are separated by a distance of 4.0 cm. Estimate the force on a 10 cm section of wire A.


An electron beam projected along the positive x-axis deflects along the positive y-axis. If this deflection is caused by a magnetic field, what is the direction of the field? Can we conclude that the field is parallel to the z-axis?


Two parallel, long wires carry currents i1 and i2 with i1 > i2. When the currents are in the same direction, the magnetic field at a point midway between the wires is 10 µT. If the direction of i2 is reversed, the field becomes 30 µT. The ratio i1/i2 is 


A hypothetical magnetic field existing in a region is given by `vecB = B_0 vece` where `vece`_r denotes the unit vector along the radial direction. A circular loop of radius a, carrying a current i, is placed with its plane parallel to the xy plane and the centre at (0, 0, d). Find the magnitude of the magnetic force acting on the loop.


Four long, straight wires, each carrying a current of 5.0 A, are placed in a plane as shown in figure. The points of intersection form a square of side 5.0 cm.
(a) Find the magnetic field at the centre P of the square.
(b) Q1, Q2, Q3, and Q4, are points situated on the diagonals of the square and at a distance from P that is equal to the diagonal of the square. Find the magnetic fields at these points. 


A conducting circular loop of radius a is connected to two long, straight wires. The straight wires carry a current i as shown in figure. Find the magnetic field B at the centre of the loop. 


If a current I is flowing in a straight wire parallel to x-axis and magnetic field is there in the y-axis then, ______.


Two free parallel wires carrying currents in the opposite directions ______.

Five long wires A, B, C, D and E, each carrying current I are arranged to form edges of a pentagonal prism as shown in figure. Each carries current out of the plane of paper.

  1. What will be magnetic induction at a point on the axis O? AxisE is at a distance R from each wire.
  2. What will be the field if current in one of the wires (say A) is switched off?
  3. What if current in one of the wire (say) A is reversed?

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×