Advertisements
Advertisements
प्रश्न
The frequency distribution of scores obtained by 230 candidates in a medical entrance test is as ahead:
Cost of living Index | Number of Months |
400 - 450 | 20 |
450 - 500 | 35 |
500 - 550 | 40 |
550 - 600 | 32 |
600 - 650 | 24 |
650 - 700 | 27 |
700 - 750 | 18 |
750 - 800 | 34 |
Total | 230 |
Draw a cummulative polygon (ogive) to represent the above data.
उत्तर
The cummulative frequency table for the given frequency table as given below:
Interval (Score) |
Frequency | Cummulative Frequency |
400 - 450 | 20 | 20 |
450 - 500 | 35 | 55 |
500 - 550 | 40 | 95 |
550 - 600 | 32 | 127 |
600 - 650 | 24 | 151 |
650 - 700 | 27 | 178 |
700 - 750 | 18 | 196 |
750 - 800 | 34 | 230 |
Ogive representing the scores obtained by 230 candidates in a medical entrance test.
APPEARS IN
संबंधित प्रश्न
The daily wages of 80 workers in a project are given below.
Wages (in Rs.) |
400-450 | 450-500 | 500-550 | 550-600 | 600-650 | 650-700 | 700-750 |
No. of workers |
2 | 6 | 12 | 18 | 24 | 13 | 5 |
Use a graph paper to draw an ogive for the above distribution. (Use a scale of 2 cm = Rs. 50 on x-axis and 2 cm = 10 workers on y-axis). Use your ogive to estimate:
- the median wage of the workers.
- the lower quartile wage of workers.
- the numbers of workers who earn more than Rs. 625 daily.
The marks obtained by 100 students in a Mathematics test are given below:
Marks | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 | 80-90 | 90-100 |
No. of students |
3 | 7 | 12 | 17 | 23 | 14 | 9 | 6 | 5 | 4 |
Draw an ogive for the given distribution on a graph sheet.
Use a scale of 2 cm = 10 units on both axes.
Use the ogive to estimate the:
1) Median.
2) Lower quartile.
3) A number of students who obtained more than 85% marks in the test.
4) A number of students who did not pass in the test if the pass percentage was 35.
Draw an ogive by less than method for the following data:
No. of rooms: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
No. of houses: | 4 | 9 | 22 | 28 | 24 | 12 | 8 | 6 | 5 | 2 |
The marks scored by 750 students in an examination are given in the form of a frequency distribution table:
Marks | No. of students |
600 - 640 | 16 |
640 - 680 | 45 |
680 - 720 | 156 |
720 - 760 | 284 |
760 - 800 | 172 |
800 - 840 | 59 |
840 - 880 | 18 |
Draw a cumulative frequency curve (ogive) for the following distributions:
Class Interval | 10 – 15 | 15 – 20 | 20 – 25 | 25 – 30 | 30 – 35 | 35 – 40 |
Frequency | 10 | 15 | 17 | 12 | 10 | 8 |
Draw an ogive for the following distributions:
Age in years (less than) | 10 | 20 | 30 | 40 | 50 | 60 | 70 |
Cumulative frequency | 0 | 17 | 32 | 37 | 53 | 58 | 65 |
Construct a frequency distribution table for the following distributions:
Marks (more than) | 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
Cumulative frequency | 100 | 87 | 65 | 55 | 42 | 36 | 31 | 21 | 18 | 7 | 0 |
Draw an ogive for the following :
Class Interval | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 |
Frequency | 8 | 12 | 10 | 14 | 6 |
Draw an ogive for the following :
Marks (More than) | 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
Cumulative Frequency | 100 | 87 | 65 | 55 | 42 | 36 | 31 | 21 | 18 | 7 | 0 |
The marks obtained by 100 students of a class in an examination are given below.
Marks | No. of students |
0-5 | 2 |
5-10 | 5 |
10-15 | 6 |
15-20 | 8 |
20-25 | 10 |
25-30 | 25 |
30-35 | 20 |
35-40 | 18 |
40-45 | 4 |
45-50 | 2 |
Draw 'a less than' type cumulative frequency curves (orgive). Hence find median