Advertisements
Advertisements
प्रश्न
The marks scored by 750 students in an examination are given in the form of a frequency distribution table:
Marks | No. of students |
600 - 640 | 16 |
640 - 680 | 45 |
680 - 720 | 156 |
720 - 760 | 284 |
760 - 800 | 172 |
800 - 840 | 59 |
840 - 880 | 18 |
उत्तर
Marks | No. of students | Marks less then | Cumulative frequency | Suitable Points |
600-640 | 16 | 640 | 16 | (640,16) |
640-680 | 45 | 680 | 61 | (680,61) |
680-720 | 156 | 720 | 217 | ( 720, 217) |
720-760 | 284 | 470 | 501 | (760, 501) |
760-800 | 172 | 800 | 673 | ( 800, 673) |
800-840 | 59 | 840 | 732 | ( 840,732) |
840-880 | 18 | 880 | 750 | ( 880,750) |
Now, we draw the less than ogive with suitable points.
APPEARS IN
संबंधित प्रश्न
The marks obtained by 100 students in a Mathematics test are given below:
Marks | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 | 80-90 | 90-100 |
No. of students |
3 | 7 | 12 | 17 | 23 | 14 | 9 | 6 | 5 | 4 |
Draw an ogive for the given distribution on a graph sheet.
Use a scale of 2 cm = 10 units on both axes.
Use the ogive to estimate the:
1) Median.
2) Lower quartile.
3) A number of students who obtained more than 85% marks in the test.
4) A number of students who did not pass in the test if the pass percentage was 35.
The annual profits earned by 30 shops of a shopping complex in a locality give rise to the following distribution:
Profit (in lakhs in Rs) | Number of shops (frequency) |
More than or equal to 5 More than or equal to 10 More than or equal to 15 More than or equal to 20 More than or equal to 25 More than or equal to 30 More than or equal to 35 |
30 28 16 14 10 7 3 |
Draw both ogives for the above data and hence obtain the median.
The following table gives production yield per hectare of wheat of 100 farms of a village:
Production yield in kg per hectare: | 50 - 55 | 55 - 60 | 60 - 65 | 65 - 70 | 70 - 75 | 75 - 80 |
Number of farms: | 2 | 8 | 12 | 24 | 38 | 16 |
Draw ‘less than’ ogive and ‘more than’ ogive.
Draw a cumulative frequency curve (ogive) for the following distributions:
Class Interval | 10 – 15 | 15 – 20 | 20 – 25 | 25 – 30 | 30 – 35 | 35 – 40 |
Frequency | 10 | 15 | 17 | 12 | 10 | 8 |
Draw an ogive for the following distributions:
Age in years (less than) | 10 | 20 | 30 | 40 | 50 | 60 | 70 |
Cumulative frequency | 0 | 17 | 32 | 37 | 53 | 58 | 65 |
Construct a frequency distribution table for the following distributions:
Marks (more than) | 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
Cumulative frequency | 100 | 87 | 65 | 55 | 42 | 36 | 31 | 21 | 18 | 7 | 0 |
Draw an ogive for the following :
Age in years | Less than 10 | Less than 20 | Less than 30 | Less than 40 | Less than 50 |
No. of people | 0 | 17 | 42 | 67 | 100 |
Prepare the cumulative frequency (less than types) table from the following distribution table :
Class | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 |
Frequency | 2 | 3 | 7 | 8 | 5 |
Use graph paper for this question. The following table shows the weights in gm of a sample of 100 potatoes taken from a large consignment:
Weight (gms) | Frequency |
50 - 60 | 8 |
60 - 70 | 10 |
70 - 80 | 12 |
80 - 90 | 16 |
90 - 100 | 18 |
100 - 110 | 14 |
110 - 120 | 12 |
120 - 130 | 10 |
(i) Calculate the cumulative frequencies.
(ii) Draw the cumulative frequency curve and form it determine the median weights of the potatoes.
Cumulative frequency curve is also called ______.